• Login
    View Item 
    •   Home
    • Master Theses (MT)
    • Mathematics and Natural Sciences
    • MT - Mathematics
    • View Item
    •   Home
    • Master Theses (MT)
    • Mathematics and Natural Sciences
    • MT - Mathematics
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Evaluasi Kinerja Lingkungan Stokastik Menggunakan Data Envelopment Analisys

    Thumbnail
    View/Open
    Reference (229.2Kb)
    Chapter III-V (305.6Kb)
    Chapter II (227.1Kb)
    Chapter I (241.8Kb)
    Abstract (229.0Kb)
    Cover (319.3Kb)
    Date
    2011-10-24
    Author
    Harahap, Rofiief
    Metadata
    Show full item record
    Abstract
    Data Envelopment Analysis (DEA) tradisional mengabaikan ketidakpastian untuk variabel input-output dengan memperlakukan pengamatan seakan-akan pengamatan tersebut merupakan variabel input-output yang sebenarnya guna memilih unit rujukan untuk penaksiran efisiensi dan penetapan-patokan kinerja. Di lingkungan stokastik, kerangka tradisional bisa mencakup unit rujukan didominasi stokastik dan mengesampingkan unit rujukan tak didominasi stokastik. Untuk memasukkan ketidakpastian untuk variabel input-output dalam DEA, diajukan kerangka mean-variansi yang dikembangkan dari teori dominasi stokastik. Dari kerangka tersebut dikembangkan perluasan pada model tradisional yang mencegah seleksi unit rujukan didominasi stokastik. Selain itu, dalam pendekatan meanvariansi, batasan variansi bisa dispesifikasi yang mengurangi ketidakpastian untuk kinerja unit yang dievaluasi relatip terhadap unit rujukannya.
     
    Traditional Data Envelope Analysis (DEA) neglects uncertainty for the input-output variables by treating the observations as if they were the true input-output variables to select reference units for efficiency estimation and performance benchmarking. In stochastic environments, the traditional framework may include stochastically dominated reference units and exclude stochastically undominated ones. To incorporate uncertainty for the input-output variables in DEA, we propose a meanvariance framework derived from the theory of stochastic dominance. From that framework an extension to the traditional model is derived that prevents the selection of stochastically dominated reference units. In addition, within the meanvariance approach, variance restrictions can be specified that reduce the uncertainty for the performance of the evaluated unit relative to its reference unit.
     
    URI
    http://repository.usu.ac.id/handle/123456789/29721
    Collections
    • MT - Mathematics [214]

    University of Sumatera Utara Institutional Repository (USU-IR)
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of USU-IRCommunities & CollectionsBy Issue DateTitlesAuthorsAdvisorsSubjectsTypesBy Submit DateThis CollectionBy Issue DateTitlesAuthorsAdvisorsSubjectsTypesBy Submit Date

    My Account

    LoginRegister

    University of Sumatera Utara Institutional Repository (USU-IR)
    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV