The 8th International Symposium for Sustainable Humanosphere (The 8th ISSH 2018)

To cite this article: 2019 IOP Conf. Ser.: Earth Environ. Sci. 374 011001

View the article online for updates and enhancements.
The 8th International Symposium for Sustainable Humanosphere (The 8th ISSH 2018)

Editorial

The 8th International Symposium for Sustainable Humanosphere (The 8th ISSH 2018) was held at Hotel Grandika, Medan (Indonesia) on 18-19 October, 2018. The forum was organized by Research Center for Biomaterials – Indonesian Institute of Sciences (RC Biomaterials – LIPI), and co-organized by University of Sumatera Utara (USU), Indonesia, and co-hosted by Research Institute for Sustainable Humanosphere (RISH) – Kyoto University, Japan. The symposium was also hugely supported by Japan Science and Technology Agency (JST) through Japan-ASEAN Science, Technology, and Innovation Platform (JASTIP) program; JST – JICA (The Japan International Cooperation Agency) collaborative program through SATREPS (Science and Technology Research Partnership for Sustainable Development); and also National Institute of Aeronautics and Space (LAPAN), Indonesia.

The Symposium was held in conjunction with Humanosphere Science School (HSS) 2018, an important and prestigious scientific forum organized by RC Biomaterials – LIPI and RISH – Kyoto University, since its first initiation in 2006. HSS provides learning experience by sharing knowledge, science, and technology delivered by prominent scientists and experts specializing in the field of humanosphere. The forum was also marked as The 384th Symposium on Sustainable Humanosphere for RISH – Kyoto University, Japan.

The present symposium captured a tagline of “Sustainable Humanosphere: On the Verge of Global Challenges and Human Security”. Humanosphere has always been an important field of interdisciplinary science, as we are facing many issues threatening humanity and our very survival such as global warming, resources depletion, energy and environmental issue, etc. Humanosphere is a concept describing the human living environment and the sphere that covers us, including the forest sphere and atmosphere.

The symposium was originated from the need to provide an interdisciplinary forum where the most serious problems affecting human security and global challenges could be discussed. We recognize that the best approach for sustainability in humanosphere is to employ an integrated perspective from Applied Science & Technology, Bioscience, Community-based development & Socioeconomic science, Earth & Atmospheric Science, and Forest & Biomaterials Science. Therefore, the selected 72 papers presented at The 8th ISSH 2018 were clustered in those five topics for the present proceedings.
The organizers appreciate the support and assistance of the co-operating institutions, the participants, the presenters and supporting staffs. We are very proud to announce that the present event had generated a great success, as shown by impressive numbers of quality papers with wide-ranging backgrounds and interdisciplinary topics. We hope the proceedings of the 8th ISSH 2018 could provide significant contribution to global research in the field of humanosphere science.

We look forward to see you all again in the future symposium.

Chief Editor

Dr. S Khoirul Himmi
Research Center for Biomaterials – Indonesian Institute of Sciences (LIPI)
Jl. Raya Bogor km 46 Cibinong, Bogor, Indonesia 16911
Editorial Board
Proceedings of the 8th International Symposium for Sustainable Humanosphere
(The 8th ISSH 2018)

Chief Editor
Dr. S Khoirul Himmi
Indonesian Institute of Sciences (LIPI), Indonesia

Guest Editor
Prof. Dr. Byung-Dee Park
Kyungpook National University, Republic of Korea
Dr. Yuki Tobimatsu
Kyoto University, Japan
Dr. Veera Singham
Universiti Sains Malaysia, Malaysia
Dr. Umit Ayata
Ataturk University, Turkey
Dr. Sadat Mohamed Rezk Khattab
Al-azhar University, Egypt

Section Editor

Applied Science and Technology
Prof. Dr. Eng. Irvan, M.Si
University of Sumatera Utara, Indonesia
Dr. Nanang Masruchin
Indonesian Institute of Sciences (LIPI), Indonesia
Dr. Widya Fatriasari
Indonesian Institute of Sciences (LIPI), Indonesia

Bioscience
Dr. Ragil Widyorini
Gadjah Mada University, Indonesia
Dr. Ikhsan Guswenrivo
Indonesian Institute of Sciences (LIPI), Indonesia
Anis Sri Lestari, M.Sc
Indonesian Institute of Sciences (LIPI), Indonesia

Community-based development and socioeconomic science
Dr. M Alie Humaedi
Indonesian Institute of Sciences (LIPI), Indonesia
Indonesian Institute of Sciences (LIPI), Indonesia
Sita Heris Anita, M.Si.
Indonesian Institute of Sciences (LIPI), Indonesia

Earth and Atmospheric science
Dr. Trismidianto
National Institute of Aeronautics and Space (LAPAN), Indonesia
Dr. Sukma Surya Kusumah
Indonesian Institute of Sciences (LIPI), Indonesia
Dwi Ajias Pramasari, M.Si.
Indonesian Institute of Sciences (LIPI), Indonesia

Forest and Biomaterials Science
Prof. Dr. Musrizal Muin
Hasanuddin University, Indonesia
Dr. Didi Tarmadi
Indonesian Institute of Sciences (LIPI), Indonesia
Dr. Maya Ismayati
Indonesian Institute of Sciences (LIPI), Indonesia
Secretariat and Processing

<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linda Kriswati, S.E.</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>Fenny Clara Ardiati, S.T.</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>Eka Lestari, S.Hut.</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>Dita Meisyara, S.Si</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>Rahmadani Ningsih Maha, M.Hum</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>Eko Setio Wibowo, S.Si</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>Kharisma Panji Ramadhan, S.Si</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>Anugerah Fajar, S.T</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>Dimas Triwibowo, S.T</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
</tbody>
</table>
List of Reviewer

The Proceedings of the 8th International Symposium for Sustainable Humanosphere (The 8th ISSH 2018)

<table>
<thead>
<tr>
<th>No</th>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ali Yansyah Abdurrahim, M.Si.</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>2</td>
<td>Anis Sri Lestari, M.S.</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>3</td>
<td>Arif Nuryawan, Ph.D.</td>
<td>Universitas Sumatera Utara, Indonesia</td>
</tr>
<tr>
<td>4</td>
<td>Bahtiar Rifai</td>
<td>University of Birmingham, United Kingdom</td>
</tr>
<tr>
<td>5</td>
<td>Deni Zulfiana, M.Si.</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>6</td>
<td>Dr. Dalia Sukmawati</td>
<td>Jakarta State University, Indonesia</td>
</tr>
<tr>
<td>7</td>
<td>Dr. Didi Tarmadi</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>8</td>
<td>Dr. Dindin Hidayat Mursyidin</td>
<td>Universitas Lambung Mangkurat, Indonesia</td>
</tr>
<tr>
<td>9</td>
<td>Dr. N Sri Hartati</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>10</td>
<td>Dr. Euis hermiati</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>11</td>
<td>Dr. Ikhsan Guswenrivo</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>12</td>
<td>Dr. Ir. Joice R.T.S.L Rimiter</td>
<td>Sam Ratulangi University, Indonesia</td>
</tr>
<tr>
<td>13</td>
<td>Dr. Maya Ismayati</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>14</td>
<td>Dr. Noersomadi</td>
<td>National Institute of Aeronautics and Space (LAPAN), Indonesia</td>
</tr>
<tr>
<td>15</td>
<td>Dr. Nurjanna Joko Trilaksono</td>
<td>Institut Teknologi Bandung, Indonesia</td>
</tr>
<tr>
<td>16</td>
<td>Dr. S Khoirul Himmi</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>17</td>
<td>Dr. Sukma Surya Kusumah</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>18</td>
<td>Dr. Wahyuni</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>19</td>
<td>Endang Christine Purba, M.Si.</td>
<td>Ekologika Consultants, Jakarta, Indonesia</td>
</tr>
<tr>
<td>20</td>
<td>Fikriyah Winata, M.S.</td>
<td>University of Illinois at Urbana-Champaign, USA</td>
</tr>
<tr>
<td>21</td>
<td>M Adly Rahandi Lubis, Ph.D.</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>22</td>
<td>Muhammad Ilman, Ph.D.</td>
<td>Director of Indonesia Ocean Programs, The Nature Conservancy</td>
</tr>
<tr>
<td>23</td>
<td>Nadia N. Kamaluddin, Ph.D.</td>
<td>Universitas Padjadjaran, Indonesia</td>
</tr>
<tr>
<td>24</td>
<td>Nanang Masruchin, Ph.D.</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>25</td>
<td>Ni puti Ratna Ayu Krishanti, M.Si.</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>26</td>
<td>Prabu Satria Sejati, M.Si.</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>27</td>
<td>Prof. Dr. Eddy Hermawan</td>
<td>National Institute of Aeronautics and Space (LAPAN), Indonesia</td>
</tr>
<tr>
<td>29</td>
<td>Siti Sofiah, S.P., M.Si.</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
<tr>
<td>30</td>
<td>Wahyu Hidayat, Ph.D.</td>
<td>University of Lampung, Indonesia</td>
</tr>
<tr>
<td>31</td>
<td>Witiyasti Imaningsih, M.Si.</td>
<td>Universitas Lambung Mangkurat, Indonesia</td>
</tr>
<tr>
<td>32</td>
<td>Yuliana Galih Dyan Anggraheni, M.P, M.Sc.</td>
<td>Indonesian Institute of Sciences (LIPI), Indonesia</td>
</tr>
</tbody>
</table>
Organizing Committee
The 8th International Symposium for Sustainable Humanosphere
(The 8th ISSH 2018)

General Coordinator
Prof. Dr. Sulaeman Yusuf, M.Agr.
Prof. Dr. Hiroyuki Hashiguchi
Dr. Kenji Umemura

Advisory Board
Prof. Dr. Takashi Watanabe
Dr. Ir. Euis Hermiati M.Sc.
Prof. Dr. Subyakto, M.Agr.
Dr. Dede Heri Yuli Yanto
Prof. Dr. Runting, S.H., M.Hum.
Dr. Riksfardini A. Ermawar
Drs. Mahyuddin K.M. Nasution, M.I.T., Ph.D.
Dr. Lisman Suryanegara, M.Agr.
Dr. Wahyu Dwianto, M.Agr.
Dr. Halimmurahman, M.T.

Chairman
Dr. Sukma Surya Kusumah, M.Si.

Vice Chairman
Dr. Apri Heri Iswanto

Secretariat
Apriwi Zulfitri, M.Sc.
Linda Kriswati, S.E.
Deni Sonjaya, S.Sos.
Fahriya Puspita Sari, S.T.

Treasury
Erlin Herlinawati, S.E.
Riyan Nurifiyani, S.E.
Triastuti, S.T.
Dr. Anita Zaitunah
Programme Coordinator
Dr. Didi Tarmadi, S.Hut., M.Si.

Conference Program
Dr. Ikhsan Guswenrivo, S.T., M.Sc.
Ridwanti Batubara, M.P.
Deni Zulfiana M.Si.
Dr. Iwan Risnasari
Wida Banar Kusumaningrum, M.Eng.
Dwi Hadi Restuningsih, S.T.
Eko Setio Wibowo, S.Si.

Proceeding Processing
Dr. S Khoirul Himmi, M.Agr.
Lilik Astari, M.ForEcosys.Sc.
Dr. Maya Ismayati, M.Bio-Res-Eng.
Sita Heris Anita, M.Si.
Dr. Nanang Masruchin, M.T.
Anis sri Lestari, M.S.
Dr. Widya Fatriasari, S.Hut, M.M.
Fenny Clara Ardiati, S.T.
Dwi Ajias Pramasari, S.TP.
Dita Meisyara, S.Si.

Documentation
Herry Samsi, S.T., M.T.
Agus Mulyadi, S.E.
Adik Bahanawan, S.Hut.
Fazhar Akbar
Agung Sumarno, S.T., M.T.
Dimas Triwibowo, S.T.

Accomodation and Transportation
Dr. Arida Susilowati
Arif Nuryawan, Ph.D.
Ismadi, M.T.
Logistic
Teguh Darmawan, S.T.
Sudarmanto, S.T.
Irawati Azhar, M.Si.
Kharisma Panji Ramadhan, S.Si.
Anugerah Fajar, S.T.
Eko Widodo, S.T.

Sponsorship
Dr. Rudi Hartono
Kurnia Wiji Prasetyo, S.Hut., M.Si.
Yusup Amin, S.Hut., M.Si.
Statement of Peer Review

To cite this article: 2019 IOP Conf. Ser.: Earth Environ. Sci. 374 011002

View the article online for updates and enhancements.
Statement of Peer Review

All papers published in this volume of IOP Conference Series: Earth and Environmental Science (EES) (ISSN: 1755-1315) have been peer reviewed through processes administered by the proceeding Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceeding journal published by IOP Publishing.
The 8th International Symposium for Sustainable Humanosphere 18–19 October 2018, Medan, Indonesia

Accepted papers received: 14 October 2019
Published online: 05 November 2019

Papers

Applied Science & Technology

OPEN ACCESS

Detection of phytopathogen and antagonistic fungi on the black diseased-cacao pod

A Zulfitri, D Zulfiana, D Meisyara, I Guswenrivo, T Kartika and A S Lestari

OPEN ACCESS

Sandwich Particleboard (SPb): effect of particle length on the quality of board

A H Iswanto and P L Ompusunggu
Isolation and genomics DNA amplification of Kapur (*Dryobalanops sumatrensis*) from North Sumatra
A Susilowati, H H Rachmat, A B Rangkuti, D Elfiati and I M Ginting

Thermal stability of isocyanate as particleboard's adhesive investigated by TGA (Thermogravimetric Analysis)
A Nuryawan and E M Alamsyah

Decolorization of synthetic textile dyes by laccase from newly isolated *Trametes hirsuta* EDN084 mediated by violuric acid
D H Y Yanto, N Auliana, S H Anita and T Watanabe

Biological activity of local plant extracts from Toba Region as insecticide
D Meisyara, N P R A Krishanti, A Zulfitri, A S Lestari, D Tarmadi, S K Himmi, Y Amin, D Zulfiana, A Fajar, S Yusuf and M Ismayati

Optimization of application of natural rubber based API adhesive for the production of laminated wood
E Hermiati, W Fatriasari, L Risanto, T Darmawan, F P Sari, Jayadi, Sudarmanto, R P B Laksana and F Akbar

Preparation and characterization of nanocrystalline cellulose using ultrasonic assisted autohydrolysis
I Risnasari, E Herawati, Yunasfi, S D Pandiangan and P Adelina

Quality of particleboard made from rattan waste
L Astari, Sudarmanto, S S Kusumah, F Akbar and K W Prasetio

TEMPO-mediated oxidation cellulose pulp modified with Monosodium Glutamate (MSG)
N Masruchin, Y D Kurniawan, S S Kusumah, P Amanda, L Suryanegara and A Nuryawan
The effect of phenol formaldehyde impregnation at various concentrations on quality of densified-oil palm trunk
R Hartono

Physical and mechanical properties of composite boards from the mixture of palm sugar fiber and cassava bagasse using mycelium of *Ganoderma lucidum* as a biological adhesive
W Agustina, P Aditiawati, S S Kusumah and R Dungani

Mechanism of heat transfer using water in wood pores during wood densification
S Sufiandi, T Darmawan and W Dwianto

Optical analysis of extractive materials distribution in wood densification
S Sufiandi, T Darmawan and W Dwianto

Design and fabrication of integration of organic-inorganic waste pyrolysis equipment
R Sigalingging, E Susanto, S Panggabean and K I J Munte

Morphological diversity of Agaricomycetes in Kuningan Botanical Garden, West Java, Indonesia
A S Lestari, D Zulfiana, M Ismayati, A Zulfitri, N P R A Krishanti, T Kartika, S K Himmi, B Wikantyoso, A H Prianto and S Yusuf

Directional response of the subterranean termite *Coptotermes curvignathus* toward volatilized *Pinus merkusii* extract
A Fajar, S K Himmi, T Kartika and S Yusuf

Isolation and identification of decomposer fungi from *Macaranga indica* and *Hibiscus macrophyllus* leaf litter from restoration area of Gunung Leuser National Park
D Elfiati, Delvian and F A Hasugian
The study of diversity index on plankton community in Lematang River to determine the quality of waters as habitat of local fishes
E P Sagala

The liverworts family Plagiochilaceae of Taman Eden 100 Natural Park, North Sumatra Indonesia
E S Siregar and N Pasaribu

Identification of gene action on rice tolerance to low temperature stress
S R Dalimunthe, L A P Putri, T Chairunnisa and A Hairmansis

Behavioral changes of powderpost beetle, *Lyctus africanus* Lesne (Coleoptera: Bostrichidae): responses on female extract
T Kartika, N Shimizu and T Yoshimura

The nutritional content of some fruits as feeding sources of Sumatran orangutans
O Onrizal and N L Auliah

Simalungun language phonotactics: the study of phonology
A R Purba and J Siahaan

The important role of coffee agroecosystem for rural development
Carolina, F Wijayanti, V Veronica and A L Biri

Coffee-based appropriate technology implementation for community empowerment: lesson learnt from rural community in Sumba Barat Daya
F Wijayanti, Carolina, M A Karim and A Sudaryanto
The model of conversation in the ceremonial Marunjuk in Batak Toba: the study of pragmatics

J Siahaan and A R Purba

The fires of identity politics: North Sumatra gubernatorial election of 2018

M Simanihuruk and H Sitorus

Fiscal decentralization in villages: high nepotism low capacity

M Simanihuruk and T Sihombing

Spatial modeling of conflict vulnerability of Sumatran elephants (Elephas maximus sumatranus) with humans in Besitang

N Sulistiyono, M Iqbal, P Patana and A Purwoko

Estimation of forest degradation distribution using landsat satellite imagery in Besitang forest landscape

N Sulistiyono, T Nifrody, P Patana and A Susilowati

Socio-cultural-based coffee management in Karo Regency

R H Harahap and Humaizi

Study of agroforestry mindi planting pattern (Melia dubia cavanilles) in Selaawi Village, Garut District, West Java Province

R Rambey, N Wijayanto, I Z Siregar, Onrizal and A Susilowati

The description and documentation of the Karonese semantics

R Ginting and S Sembiring
The practice of agroforestry *Toona sureni* merr by the community of Simalungun Regency, North Sumatera
S Latifah, A Purwoko, K S Hartini, A Sadeli and T N R Tambal

The prediction of rainfall events using WRF (weather research and forecasting) model with ensemble technique
I Sofiati and A Nurlatifah

Change in rainfall per-decades over Java Island, Indonesia
L Q Avia

Utilization of surface meteorological data, Himawari-8 satellite data, and radar data to analyze landspout in Sumenep, East Java, Indonesia (case study of 20 November 2017)
R D Yudistira, R Mahubessy, G D Krishawan, G G Wisnawa, I M K Tirtanegara, A Fadlan and E Wardoyo

The large-scale meteorological condition during the critical stage of Mesoscale Convective Complexes (MCCs) over Indian Ocean
Trismidianto

Evaluation of peat soil properties for oil palm plantation in nine years of plant at Kubu Raya District, West Kalimantan, Indonesia
A Rauf, F S Harahap and Rahmawaty

Moisture content, color quantification and starch content of oil palm trunk (*Elaeis guineensis* Jacq.)

Analysis of coastal vegetation density changes of Langkat Regency, North Sumatera, Indonesia
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>View Options</th>
<th>Article ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>The evaluation of Agathis wood from densification process to the resistance of Trametes versicolor fungi</td>
<td>Baharudin, A D Yunianti, I Taskirawati and Agussalim</td>
<td>Open abstract</td>
<td>012043</td>
</tr>
<tr>
<td>Land use analysis of coastal belt in the coastal area of Langkat Regency North Sumatra Province using Sentinel 2 Satellite imagery</td>
<td>B Slamet, S Nadira and M Basyuni</td>
<td>Open abstract</td>
<td>012044</td>
</tr>
<tr>
<td>Decrease in water level by rooter technology one-way system on flood-prone land in Sunggal District, North Sumatra, Indonesia</td>
<td>B Utomo, F Ramadhan and A Dalimunthe</td>
<td>Open abstract</td>
<td>012045</td>
</tr>
<tr>
<td>Reference lateral design value of single shear connection of Merbau wood using bolt</td>
<td>E Herawati, Sucahyo, N Nugroho and L Karlinasari</td>
<td>Open abstract</td>
<td>012046</td>
</tr>
<tr>
<td>The physical properties of densified Terentang wood (Campnosperma auriculatum (blume) hook. f) on various boiling and pressing time</td>
<td>E Sribudiani, S Somadona and G P Manalu</td>
<td>Open abstract</td>
<td>012047</td>
</tr>
<tr>
<td>The distribution of non-timber forest products in the protected areas (case study at PT Toba Pulp Lestari concession)</td>
<td>I Azhar, Z Nasution, Delvian, Agussabti, Riswan, S Sidabukke, M Sianipar and MF Srena</td>
<td>Open abstract</td>
<td>012048</td>
</tr>
<tr>
<td>Analysis of vegetation diversity at Salib Kasih tourism area of Simorangkir Julu Village, North Tapanuli Regency</td>
<td>K S Hartini and I L Silitonga</td>
<td>Open abstract</td>
<td>012049</td>
</tr>
</tbody>
</table>
Physical and mechanical properties of urea formaldehyde and phenol formaldehyde-bonded particleboards made from corn stalk
K W Prasetiyo, L Astari, F A Syamani and Subyakto

Species composition and plant diversity of logged-over forest in Sikundur, Gunung Leuser National Park, North Sumatra
M Basyuni, B Slamet, N Sulistiyono, A S Thoha, Y Bimantara and E A Widjaja

Leaf nutrition content and organoleptic of Jeruju (Acanthus ilicifolius L) and processed products in Lubuk Kertang Village, North Sumatera
M Basyuni, Y S Siagian, B Slamet, N Sulistiyono, L A P Putri, E Yusraini and I Lesmana

Evaluation of two-year mangrove rehabilitation using Rhizophora apiculata propagules in Lubuk Kertang Village, North Sumatra
M Basyuni, A Al Habib, B Slamet, N Sulistiyono, R Hayati, L A P Putri, E Yusraini and I Lesmana

Analysis of biomass and carbon potential on eucalyptus stand in industrial plantation forest, North Sumatra, Indonesia
Muhdi, A Sahar, D S Hanafiah, A Zaitunah and F W B Nababan

Study of medicinal plant used by the ethnic community of Karo around Lau DeBuak-DeBuak Tourism Park, Indonesia
O Affandi and R Batubara

Medicinal plant inventory using GIS and GPS in Garunggang Village, Kuala Sub-District, Langkat District, North Sumatra
Rahmawaty, R Amalia, A Rauf and R Batubara

LignoIndo: image database of Indonesian commercial timber
R Damayanti, E Prakasa, Krisdianto, L M Dewi, R Wardoyo, B Sugiarto, H F Pardede, Y Riyanto, V F Astutiputri, G R Panjaitan, M L Hadiwidjaja, Y H Maulana and I N Mutaqin
<table>
<thead>
<tr>
<th>Open Access</th>
<th>012058</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic diversity of Mindi (Melia Spp.) and its implications on the development of seed source for community forests</td>
<td>R Rambey, A Susilowati, I Z Siregar and N Wijayanto</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open Access</th>
<th>012059</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis of vegetation density change in coastal villages of Tapanuli Tengah and Sibolga using landsat images</td>
<td>Samsuri, A Zaitunah and H I Siregar</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open Access</th>
<th>012060</th>
</tr>
</thead>
<tbody>
<tr>
<td>The physical properties of densified Terentang wood (Campnosperma auriculatum (blume) hook. f) on various steaming and pressing time</td>
<td>S Somadona, E Sribudiani and A Rahmawati</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open Access</th>
<th>012061</th>
</tr>
</thead>
<tbody>
<tr>
<td>The flexural properties of medium density fibreboard overlaid with veneer from three species of wood</td>
<td>T D Cahyono, M Y Massijaya, A H Iswanto, H Yanti and L N Anisah</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open Access</th>
<th>012062</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anatomical observation and characterization on basic properties of Agarwood (Gaharu) as an Appendix II CITES</td>
<td>W Dwianto, S S Kusumah, T Darmawan, Y Amin, A Bahanawan, D A Pramasari, E Lestari, S K Himmi, E Hermiati, W Fatriasari, R P B Laksana and R Damayanti</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open Access</th>
<th>012063</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study on the existence and characteristics of Sonokeling (Dalbergia latifolia Roxb) as an Appendix II CITES Wood</td>
<td>W Dwianto, A Bahanawan, S S Kusumah, T Darmawan, Y Amin, D A Pramasari, E Lestari, F Akbar and Sudarmanto</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Open Access</th>
<th>012064</th>
</tr>
</thead>
<tbody>
<tr>
<td>The heavy metal of cuprum (Cu) and lead(Pb) content in Avicennia marina and Rhizophora mucranata</td>
<td>Yunasfi, Desrita and K P Singh</td>
</tr>
</tbody>
</table>
In vitro cytotoxicity of Alstonia scholaris (R.Br) bark on Vero and HeLa cell lines

Zuraida and S Mariya
Analysis of vegetation density change in coastal villages of Tapanuli Tengah and Sibolga using landsat images

To cite this article: Samsuri et al 2019 IOP Conf. Ser.: Earth Environ. Sci. 374 012059

View the article online for updates and enhancements.
Analysis of vegetation density change in coastal villages of Tapanuli Tengah and Sibolga using landsat images

Samsuri¹, A Zaitunah¹ and H I Siregar²

¹ Forestry Faculty, Universitas Sumatera Utara, Kampus USU, Padang Bulan-Medan 20155, Indonesia
² Forester, Pematang Siantar, Indonesia
E-mail: samsuri@usu.ac.id

Abstract. Indonesia is an archipelagic country that has a long coastline of approximately 99,093 km. Most of the areas are intensively exploited by human activities. The increased population and development activities in the coastal area of Tapanuli Tengah and Sibolga have caused degradation and conversion of forests that cause the density of vegetation change. This research was conducted by overlaying some spatial data of the year 2007 and 2017 to analyze the changes of vegetation density and NDVI (Normalized Difference Vegetation Index) values between 2007 and 2017. The research result showed that the largest area of vegetation density changes was the decreased of very dense class, which was 62.48%. The largest area increased occurred in the dense class of 50.75%. This research is expected to provide information for considering the management of coastal areas in Tapanuli Tengah and Sibolga.

1. Introduction
Indonesia is an archipelagic country that has a long coastline of approximately 99,093 km [1]. Tapanuli Tengah Regency and Sibolga City are in those areas. In these regions, the demand for land has soared, and existing lands have been intensively exploited for human activities such as settlement, industry, seaport, aquaculture, agriculture, and tourism. These have caused new problems in the coastal areas: coastal erosion and sedimentation.

Human beings have various needs to fulfill in order to support their livelihood, and it becomes one of the factors contributing to forest degradation and conversion. The rapid population increase has significantly affected land utilization. The use of land without adhering to spatial planning principles may hamper environmental quality, lead to environmental degradation, as well as reduce natural resources. These occur in coastal areas with increasing population density. The high population increase and rapid development of the coastal areas of Tapanuli Tengah Regency and Sibolga City have put higher ecological pressure on the regions’ coastal ecosystem. The increased pressure will surely be a threat to the existence and sustainability of local coastal ecosystem and resources [2].

Based on the aforementioned condition, monitoring should be conducted on the change of vegetation density in Tapanuli Tengah Regency and Sibolga City. Data on vegetation density change are very much needed as a preventive measure and a basis for forest area management and must be collected periodically. Therefore, coastal area spatial data with sustainable planning are required. A study was conducted to analyze the vegetation density in the coastal villages of Tapanuli Tengah Regency and Sibolga City in 2007 and 2017.
The objectives of this research are to differentiate and measure the changes of vegetation density in the coastal villages of Tapanuli Tengah Regency and Sibolga City in 2007 and 2017, as well as to measure land cover of each density class in the coastal villages of Tapanuli Tengah Regency and Sibolga City in 2017.

2. Research methods

2.1. Research location and time
The research was conducted from August 2017 to May 2018. It was located in the coastal villages of Tapanuli Tengah Regency and Sibolga City in North Sumatra Province (figure 1). Data processing was completed at the Forest Management Laboratory of Forest Management Department, Faculty of Forestry, University of North Sumatra.

2.2. Research tools and data
The tools used in this research consisted of data collection and data analysis tools. The tools used for field data collection were GPS (Global Position System), measurement tape, haga hypsometer, camera, writing tools, and so forth. Meanwhile, data analysis was conducted by using Computer, Excel, ArcGis 10.3, and ERDAS Imagine 9.2.

Data used in this research were primary data namely field ground check and secondary data namely Landsat 5 images of the year 2007 and Landsat 8 images of the year 2017 as well as administrative maps of Tapanuli Tengah Regency and Sibolga City of 2017.

2.3. Data collection method
Data collection method in this research was performed by downloading Landsat 5 path/row 129/58 images of 2007 and Landsat 8 OLI path/row 129/58 images of 2017 from earthexplorer.usgs.gov which were needed as secondary data according to the analysis objectives. Primary data are the data obtained
through direct observation at the research location (ground checking) by recording field observation point coordinate from GPS as well as the condition surrounding that particular point along with vegetation pictures and analysis.

Vegetation analysis was done using the transect method. Forty plots were used based on purposive sampling, that is a sampling method where the research sample is determined by the researchers based on certain criteria [3]. Observation transect was made by sample plots with specific stand level, namely tree level of 10 x 10 m (mangrove forest) and 20 x 20 m (coastal forest); while sub-plot sizes were 5 x 5 m (mangrove forest) and 10 x 10 m (coastal forest) for sapling level and 2 x 2 m (mangrove forest) and 5 x 5 m (coastal forest) for seedling level.

Vegetation analysis for trees, saplings, and seedlings was calculated with the following formula [4]:

\[
\text{Density per ha} = \frac{\text{total number of species} \times 10000 \text{ m}^2}{\text{total number of quadrat studied} \times \text{area of quadrat}}
\]

(1)

\[
\text{Relative density} = \left(\frac{\text{density per ha of a species}}{\text{total number of density all species}} \right) \times 100\%
\]

(2)

\[
\text{Frequency of species} = \left(\frac{\text{total number of quadrat in which species found}}{\text{total number of quadrat studied}} \right)
\]

(3)

\[
\text{Relative frequency} = \left(\frac{\text{frequency of a species}}{\text{total number of frequency all species}} \right) \times 100\%
\]

(4)

\[
\text{Basal area m}^2 = \frac{3,1416 \times \text{(diameter)}^2}{4}
\]

(5)

\[
\text{Dominance} = \frac{\text{basal area of a species}}{\text{total number of quadrat studied}}
\]

(6)

\[
\text{Relative dominance} = \left(\frac{\text{dominance of a species}}{\text{total dominance of all species}} \right) \times 100\%
\]

(7)

\[
\text{Important Value Index}_{\text{tree}} = \text{Relative density} + \text{Relative frequency} + \text{Relative dominance}
\]

(8)

\[
\text{Important Value Index}_{\text{treesapling, seedling}} = \text{Relative density} + \text{Relative frequency} + \text{Relative dominance}
\]

(9)

2.4. Data analysis methods

2.4.1. Image processing

a. The merge of image band
Landsat images downloaded from earthexplorer.usgs.gov consisted of separated bands. Thus, the image bands must be merged first to do a radiometric correction. The image bands were merged using ERDAS Imagine 9.2.

b. Radiometric correction
A radiometric correction was done in order to eliminate noises on the images caused by the atmosphere. A radiometric correction was performed by sharpening the image contrast. The sharpening process was completed using a linear model in ERDAS Imagine 9.2.

c. Image cropping
Image cropping was conducted to obtain a picture of the research location that would be studied more specifically. Image cropping was conducted using ArcGIS 10.3 software on the administrative maps of Tapanuli Tengah Regency and Sibolga City obtained from the Forest Area Designation Agency (BPKH).
d. **NDVI transformation**

NDVI transformation was done using ArcGis 10.3 software on the red and near-infrared band, namely band 3 (red) and 4 (near infrared) for Landsat 5 and band 4 (red) and 5 (near infrared) for Landsat 8.

The main principle of NDVI is measuring the greenness level. Greenness intensity on the Landsat images was correlated with the density level of vegetation and might detect greenness level with leaf chlorophyll content. The NDVI transformation values which range from -1 to +1 have a different presentation on land utilization. The higher the NDVI value, the denser the vegetation will be, and, vice versa, the lower value means that the area is a water body. According to Verhulst and Govaerts [5], the formula used is:

\[
NDVI = \frac{IR - R}{IR + R}
\]

NDVI values are classified into five different classes namely: non-vegetation, sparse, intermediate, dense, and very dense. The classification was determined by using an equal interval in ArcGIS software [6]. Its function is to know the vegetation density in the coastal villages of Tapanuli Tengah Regency and Sibolga City.

2.4.2. **Land cover analysis on density class**

a. **The merge of image band**

Landsat images downloaded from earthexplorer.usgs.gov consisted of separated bands. Thus, an image band must be merged first to do a radiometric correction. The merge of image band was done using ERDAS Imagine 9.2.

b. **Radiometric correction**

A radiometric correction was done in order to eliminate noises on the images caused by the atmosphere. A radiometric correction was performed by sharpening the image contrast. The sharpening process was completed using a linear model in ERDAS Imagine 9.2.

c. **Image cropping**

Image cropping was done to obtain a picture of the research location that would be studied more specifically. Image cropping was done using ArcGis 10.3 software on the administrative maps of Tapanuli Tengah Regency and Sibolga City obtained from the Forest Area Designation Agency (BPKH).

d. **Supervised classification**

Supervised classification is a classification process that is supervised and controlled by the user. User intervention starts from the selection of research location until the clustering process. Supervised classification was done based on a field survey by creating polygon samples on land cover classes. Land cover classification is based on the Indonesian National Standard 2010. The method used for this classification is the maximum likelihood in ERDAS Imagine 9.2 software.

e. **Image classification accuracy calculation**

The accuracy level of image classification can be determined by comparing the results of image classification and actual data obtained from the field. The calculation of accuracy is a step that determines whether the image classification result, in fact, represents the actual condition or not. Accuracy is usually analyzed in a contingency matrix, i.e., a square matrix containing the number of
pixels in the classification, which is often called an error matrix or confusion matrix [7, 8]. Mathematically, the formula to calculate accuracy is as follow:

$$\text{Kappa accuracy} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{N} X_{ij} \times x_{100\%}}{\sum_{i=1}^{N} \sum_{j=1}^{n} X_{ij}}$$ \hspace{1cm} (11)

where:
- N = Total pixel used for observation
- N_i = The number of line/path on the i error matrix (equal to the number of class)
- X_{ni} = Total column on n row

f. Land cover analysis on vegetation density class

Land cover analysis on vegetation density class was conducted by overlaying the 2017 land cover map with NDVI map from the same year. The overlaying process was performed using ArcGis 10.3 software, and then the table data was processed using Excel software.

3. Results and discussion

3.1. NDVI value distribution in Coastal Villages of Tapanuli Tengah Regency and Sibolga City in 2007 and 2017

Image processing of 2007 and 2017 data was done using vegetation density index resulted in NDVI values and distribution. The NDVI values and distribution of vegetation in the coastal villages of Tapanuli Tengah Regency and Sibolga City are presented in table 1.

<table>
<thead>
<tr>
<th>No</th>
<th>Vegetation Density Class</th>
<th>NDVI</th>
<th>2007 Total Area (Ha)</th>
<th>2007 Percentage (%)</th>
<th>2017 Total Area (Ha)</th>
<th>2017 Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Non-vegetation</td>
<td>< 0</td>
<td>526.84</td>
<td>0.61</td>
<td>5,772.93</td>
<td>6.67</td>
</tr>
<tr>
<td>2</td>
<td>Sparse</td>
<td>0 – 0.16</td>
<td>1,173.75</td>
<td>1.36</td>
<td>1,893.91</td>
<td>2.19</td>
</tr>
<tr>
<td>3</td>
<td>Intermediate</td>
<td>0.16 – 0.32</td>
<td>3,076.20</td>
<td>3.56</td>
<td>7,257.80</td>
<td>8.39</td>
</tr>
<tr>
<td>4</td>
<td>Dense</td>
<td>0.32 – 0.48</td>
<td>7,959.38</td>
<td>9.20</td>
<td>51,852.18</td>
<td>59.95</td>
</tr>
<tr>
<td>5</td>
<td>Very Dense</td>
<td>> 0.48</td>
<td>73,745.01</td>
<td>85.27</td>
<td>19,704.37</td>
<td>22.78</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>86,481.19</td>
<td>100.00</td>
<td>86,481.19</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Based on the data in table 1, in 2007, the largest area with highest NDVI value is a very dense vegetation class, with NDVI range of > 0.48 and a total area of 73,745.01 ha or 85.27% of total coastal village area in Tapanuli Tengah Regency and Sibolga City. Meanwhile, in 2017, the dense vegetation class has higher value with NDVI value of 0.32 – 0.48 and a total area of 51,852.18 ha or 59.95%. The NDVI distribution map can be seen in figures 2.

3.2. Land cover analysis on vegetation density class in Coastal Villages in 2017

The results of the land cover analysis found eight types of land cover namely forest, plantation, shrub, undeveloped land, rice field, settlement, mangrove, and water body, as presented in table 2 and figure 3. On the classified image, there was an unidentified land cover. It was because there were many clouds in the research location and their shadows hid the land cover. The large quantity of cloud cover has affected the quality of the classification data result, as mentioned by Jaya[9] who said that one of the issues in processing satellite images is the presence of noise that causes a visual disturbance. Among noises that are often found are clouds. Clouds are considered a disturbance because they cover several areas of satellite images.
Figure 2. NDVI distribution map in Coastal Villages of Tapanuli Tengah Regency and Sibolga City in 2007 (left) and 2017 (right).

Table 2. Land cover in Coastal Villages of Tapanuli Tengah Regency and Sibolga City in 2017.

<table>
<thead>
<tr>
<th>No</th>
<th>Type of land cover</th>
<th>Total area (ha)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Forest</td>
<td>24,618.72</td>
<td>28.47</td>
</tr>
<tr>
<td>2</td>
<td>Plantation</td>
<td>26,525.48</td>
<td>30.67</td>
</tr>
<tr>
<td>3</td>
<td>Undeveloped land</td>
<td>10,740.75</td>
<td>12.42</td>
</tr>
<tr>
<td>4</td>
<td>Rice field</td>
<td>10,425.67</td>
<td>12.06</td>
</tr>
<tr>
<td>5</td>
<td>Water body</td>
<td>2,799.39</td>
<td>3.24</td>
</tr>
<tr>
<td>6</td>
<td>Settlement</td>
<td>2,549.18</td>
<td>2.95</td>
</tr>
<tr>
<td>7</td>
<td>Shrub</td>
<td>1,745.52</td>
<td>2.02</td>
</tr>
<tr>
<td>8</td>
<td>Mangrove</td>
<td>39.64</td>
<td>0.05</td>
</tr>
<tr>
<td>9</td>
<td>Unidentified</td>
<td>7,036.84</td>
<td>8.14</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>86,481.19</td>
<td>100.00</td>
</tr>
</tbody>
</table>

The overlay result of 2017 land cover map with 2017 vegetation density map resulted in land cover types on vegetation density class for that particular year. The type of land cover on vegetation density class used for vegetated land cover showed the condition of each land cover on the vegetation density in the research location, as presented in table 3.

Based on data presented in table 3, a land cover class with the highest value was found in dense density class of 37.74% in the form of forest land cover class. In the plantation land cover class, the highest value was dense density class of 27.11% of total area. Meanwhile, the highest value of mangrove land cover class was dense density class of 0.14%. It is due to the fact that many land conversions from mangrove forest to plantation are owned by the community or the private sector. From the survey result, plantations in the coastal villages of Tapanuli Tengah Regency and Sibolga City have expanded to the coastal regions. It is confirmed by data from Tapanuli Tengah Regency and Sibolga City Statistics.
Agencies in 2016 stating that increased land opening for plantation and settlement was the cause for changes in coastal regions resulting in the reduced area of mangrove forest.

Table 3. Types of vegetated land cover on vegetation density class in 2017.

<table>
<thead>
<tr>
<th>Land cover</th>
<th>Density level</th>
<th>Total area (Ha)</th>
<th>Total area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td>Sparse</td>
<td>173.79</td>
<td>0.33</td>
</tr>
<tr>
<td>Forest</td>
<td>Intermediate</td>
<td>1,516.34</td>
<td>2.86</td>
</tr>
<tr>
<td>Forest</td>
<td>Dense</td>
<td>20,036.31</td>
<td>37.74</td>
</tr>
<tr>
<td>Forest</td>
<td>Very dense</td>
<td>2,972.65</td>
<td>5.60</td>
</tr>
<tr>
<td>Mangrove</td>
<td>Sparse</td>
<td>12.68</td>
<td>0.02</td>
</tr>
<tr>
<td>Mangrove</td>
<td>Intermediate</td>
<td>32.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Mangrove</td>
<td>Dense</td>
<td>75.55</td>
<td>0.14</td>
</tr>
<tr>
<td>Plantation</td>
<td>Intermediate</td>
<td>13.48</td>
<td>0.03</td>
</tr>
<tr>
<td>Plantation</td>
<td>Dense</td>
<td>14,392.49</td>
<td>27.11</td>
</tr>
<tr>
<td>Plantation</td>
<td>Very dense</td>
<td>12,119.44</td>
<td>22.83</td>
</tr>
<tr>
<td>Scrub</td>
<td>Intermediate</td>
<td>543.44</td>
<td>1.02</td>
</tr>
<tr>
<td>Scrub</td>
<td>Dense</td>
<td>1,198.06</td>
<td>2.26</td>
</tr>
<tr>
<td>Scrub</td>
<td>Very dense</td>
<td>3.86</td>
<td>0.01</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>53,090.15</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Figure 3. Land Cover Map in Coastal Villages of Tapanuli Tengah Regency and Sibolga City in 2017.

3.3. Analysis on vegetation density change in coastal villages of Tapanuli Tengah Regency and Sibolga City in 2007 and 2017

In analyzing the vegetation density in Tapanuli Tengah Regency and Sibolga City. Landsat images 2007 and 2017 were used. From the 2017 images, there are clouds covering the land which has made it difficult to fully identify the land cover. Therefore, the resulted NDVI values were affected by this factor [10] stated that other factors causing variations in NDVI value are fogs that may cause NDVI value to be lower than the actual condition. Another short coming of Landsat satellite images is on their passive...
sensor, which makes the resulted data to be highly dependent on the atmosphere condition during the recording. Changes in vegetation density class were obtained from the subtracation of the total area of vegetation density in 2007 with that in 2017. The result of vegetation density change is presented in table 4.

Table 4. Changes in vegetation density in coastal villages of Tapanuli Tengah Regency and Sibolga City in 2007 and 2017.

<table>
<thead>
<tr>
<th>No</th>
<th>Vegetation density class</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total area (Ha)</td>
</tr>
<tr>
<td>1</td>
<td>Non vegetation</td>
<td>5,246.09</td>
</tr>
<tr>
<td>2</td>
<td>Sparse</td>
<td>720.16</td>
</tr>
<tr>
<td>3</td>
<td>Intermediate</td>
<td>4,181.60</td>
</tr>
<tr>
<td>4</td>
<td>Dense</td>
<td>43,892.80</td>
</tr>
<tr>
<td>5</td>
<td>Very dense</td>
<td>54,040.64*</td>
</tr>
</tbody>
</table>

Note (): Decrease*

Based on data in table 4, there were changes in the total area of vegetation density class on each NDVI value range in 2007 and 2017. The change in a total area of vegetation density class on each NDVI value range consisted of increased and decreased density area according to the vegetation density class. In 2017, the total area of very dense vegetation decreased by 54,040.64 Ha or approximately 62.48%. Meanwhile, in dense vegetation area, there was an increase in total area in 2017 as much as 43,892.80 Ha or approximately 50.75%. Changes occurred in very dense class in 2017 were very substantial, which was caused by forest degradation and conversion in the coastal areas. Forest degradation and conversion were triggered by human activities. Rapid population increase has encouraged human to clear and convert forests for their livelihood. It is in line with Zaitunah et al. [11] statement that areas with dense population and intense human activity as well as high accessibility may trigger and encourage human to change land utilization. Humans are interested in converting land to generate a new source of income.

Impacts of vegetation density change consisted of erosion, flood, and sedimentation. Besides, the changes will also reduce the chance to dampen the tsunami wave. In addition to human activities, a tsunami is another cause of vegetation density change. After the 2004 tsunami, as of 2007 half of coastal forests and mangrove forests in Tapanuli Tengah Regency and Sibolga City were converted into settlements and plantations [12] which continued to expand until 2017. Based on the study by Onrizal and Mansor [13] before the tsunami, the coastal vegetation in North Sumatra was dominated by healthy mangrove forest and coastal forests dominated by *Casuarina equisetifolia* with 171 individu/Ha density.

Based on field observation, the government recently conducted rehabilitation of mangrove forests, but the government infrequently monitored it so that many rejuvenated plants did not grow well. Communities surrounding the coastal and mangrove forests in Tapanuli Tengah Regency and Sibolga City did not care about the forests’ condition. The lack of community awareness towards the environment has caused damages on mangrove forest and coastal forest, as well as contamination on seawater that may damage the sea ecosystem.

Based on the overlay result of vegetation density map in 2007 and 2017, changes in each vegetation density class in Tapanuli Tengah Regency and Sibolga City can be identified. In the very dense class, there is a significant change towards a dense class. Changes in each vegetation density class in Tapanuli Tengah Regency and Sibolga City from 2007 to 2017 can be seen in figure 4.

3.4. Basal area value on NDVI value distribution

Analysis of mangrove vegetation in Jago-Jago village and Tapian Nauli village in Tapanuli Tengah Regency showed that there were seven types of mangrove namely *Avicennia marina, Bruguiera gymnorrhiza, Ceriops tagal, Rhizophora apiculata, Rhizophora mucronata, Rhizophora stylosa* and *Soneratia alba*. Analysis of coastal vegetation in Pandan village and that in Binsasi village showed that
there were six types of coastal plan namely acacia (*Acacia auriculiformis*), Australian pine (*Casuarina equisetifolia*), beach hibiscus (*Hibiscus tiliaceus*), butterfly tree (*Bauhinia purpurea*), sea almond (*Terminalia catappa*) and rain tree (*Samanea saman*).

![Figure 4. NDVI change map in Coastal Villages of Tapanuli Tengah Regency and Sibolga City in 2007 and 2017.](image)

Based on the correlation between Basal Area and NDVI distribution value, we may know the accuracy of mangrove and coastal vegetation density in the field with vegetation density using NDVI. There was no sparse vegetation density found in the mangrove forest because based on field observation, mangrove forests on the research location consisted of young plants as a result of rehabilitation efforts. NDVI distribution value of mangrove forest ranges from 0.16 – 0.32 to > 0.48 as mentioned in table 5. Meanwhile, there was no very dense vegetation class found in the coastal forest, It is because coastal villages in Tapanuli Tengah Regency and Sibolga City were mostly converted into plantation and settlement. In addition to that, there were many tourism spots developed in the area without taking into account environmental conservation. NDVI distribution value for coastal forest ranges from 0 – 0.16 to 0.32 – 0.48 as mentioned in table 6.

Based on the overlay result of NDVI distribution map of 2017 with field point in 2017, the correlation between mangrove and coastal vegetation with their NDVI values can be identified. Table 5 and 6 show that the higher the value of the basal area, the higher the vegetation density level. Basal area value is determined by the diameter of each plant. The larger the diameter of the plant, the higher the basal area value. Abdurachman [14] stated that the basal area value for fewer trees with a large diameter is almost equal to the basal area value for a higher number of trees with a smaller diameter. According to Sumarna [15] diameter can also indicate canopy area of a plant, where the increase in diameter will affect the growth of the tree’s canopy. The diameter of a tree significantly correlates with its canopy area.
Table 5. Basal area value of mangrove vegetation with NDVI distribution value in 2017.

<table>
<thead>
<tr>
<th>Plot</th>
<th>Basal area m²/Ha</th>
<th>NDVI value</th>
<th>NDVI distribution</th>
<th>Vegetation density class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.63</td>
<td>0.21</td>
<td>0.16 – 0.32</td>
<td>Intermediate</td>
</tr>
<tr>
<td>2</td>
<td>9.46</td>
<td>0.17</td>
<td>0.16 – 0.32</td>
<td>Intermediate</td>
</tr>
<tr>
<td>3</td>
<td>3.32</td>
<td>0.16</td>
<td>0.16 – 0.32</td>
<td>Intermediate</td>
</tr>
<tr>
<td>4</td>
<td>6.63</td>
<td>0.31</td>
<td>0.16 – 0.32</td>
<td>Intermediate</td>
</tr>
<tr>
<td>5</td>
<td>9.46</td>
<td>0.18</td>
<td>0.16 – 0.32</td>
<td>Intermediate</td>
</tr>
<tr>
<td>6</td>
<td>9.95</td>
<td>0.42</td>
<td>0.32 – 0.48</td>
<td>Dense</td>
</tr>
<tr>
<td>7</td>
<td>9.95</td>
<td>0.39</td>
<td>0.32 – 0.48</td>
<td>Dense</td>
</tr>
<tr>
<td>8</td>
<td>9.95</td>
<td>0.46</td>
<td>0.32 – 0.48</td>
<td>Dense</td>
</tr>
<tr>
<td>9</td>
<td>9.95</td>
<td>0.33</td>
<td>0.32 – 0.48</td>
<td>Dense</td>
</tr>
<tr>
<td>10</td>
<td>11.79</td>
<td>0.37</td>
<td>0.32 – 0.48</td>
<td>Dense</td>
</tr>
<tr>
<td>11</td>
<td>11.79</td>
<td>0.33</td>
<td>0.32 – 0.48</td>
<td>Dense</td>
</tr>
<tr>
<td>12</td>
<td>11.83</td>
<td>0.42</td>
<td>0.32 – 0.48</td>
<td>Dense</td>
</tr>
<tr>
<td>13</td>
<td>15.11</td>
<td>0.39</td>
<td>0.32 – 0.48</td>
<td>Very dense</td>
</tr>
<tr>
<td>14</td>
<td>12.78</td>
<td>0.49</td>
<td>> 0.48</td>
<td>Very dense</td>
</tr>
<tr>
<td>15</td>
<td>12.78</td>
<td>0.53</td>
<td>> 0.48</td>
<td>Very dense</td>
</tr>
<tr>
<td>16</td>
<td>12.78</td>
<td>0.60</td>
<td>> 0.48</td>
<td>Very dense</td>
</tr>
<tr>
<td>17</td>
<td>12.29</td>
<td>0.54</td>
<td>> 0.48</td>
<td>Very dense</td>
</tr>
<tr>
<td>18</td>
<td>12.29</td>
<td>0.59</td>
<td>> 0.48</td>
<td>Very dense</td>
</tr>
<tr>
<td>19</td>
<td>15.11</td>
<td>0.61</td>
<td>> 0.48</td>
<td>Very dense</td>
</tr>
<tr>
<td>20</td>
<td>12.29</td>
<td>0.55</td>
<td>> 0.48</td>
<td>Very dense</td>
</tr>
</tbody>
</table>

Table 6. Basal area value of coastal vegetation with NDVI distribution value in 2017.

<table>
<thead>
<tr>
<th>Plot</th>
<th>Basal area m²/Ha</th>
<th>NDVI value</th>
<th>NDVI distribution</th>
<th>Vegetation density class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.60</td>
<td>0.02</td>
<td>0 – 0.16</td>
<td>Sparse</td>
</tr>
<tr>
<td>2</td>
<td>1.72</td>
<td>0.14</td>
<td>0 – 0.16</td>
<td>Sparse</td>
</tr>
<tr>
<td>3</td>
<td>1.60</td>
<td>0.13</td>
<td>0 – 0.16</td>
<td>Sparse</td>
</tr>
<tr>
<td>4</td>
<td>1.60</td>
<td>0.15</td>
<td>0 – 0.16</td>
<td>Sparse</td>
</tr>
<tr>
<td>5</td>
<td>1.72</td>
<td>0.13</td>
<td>0 – 0.16</td>
<td>Sparse</td>
</tr>
<tr>
<td>6</td>
<td>1.67</td>
<td>0.15</td>
<td>0 – 0.16</td>
<td>Sparse</td>
</tr>
<tr>
<td>7</td>
<td>2.40</td>
<td>0.19</td>
<td>0.16 – 0.32</td>
<td>Intermediate</td>
</tr>
<tr>
<td>8</td>
<td>2.00</td>
<td>0.24</td>
<td>0.16 – 0.32</td>
<td>Intermediate</td>
</tr>
<tr>
<td>9</td>
<td>2.00</td>
<td>0.17</td>
<td>0.16 – 0.32</td>
<td>Intermediate</td>
</tr>
<tr>
<td>10</td>
<td>2.00</td>
<td>0.18</td>
<td>0.16 – 0.32</td>
<td>Intermediate</td>
</tr>
<tr>
<td>11</td>
<td>2.00</td>
<td>0.24</td>
<td>0.16 – 0.32</td>
<td>Intermediate</td>
</tr>
<tr>
<td>12</td>
<td>2.40</td>
<td>0.20</td>
<td>0.16 – 0.32</td>
<td>Intermediate</td>
</tr>
<tr>
<td>13</td>
<td>2.40</td>
<td>0.25</td>
<td>0.16 – 0.32</td>
<td>Intermediate</td>
</tr>
<tr>
<td>14</td>
<td>2.45</td>
<td>0.23</td>
<td>0.16 – 0.32</td>
<td>Intermediate</td>
</tr>
<tr>
<td>15</td>
<td>3.12</td>
<td>0.33</td>
<td>0.32 – 0.48</td>
<td>Dense</td>
</tr>
<tr>
<td>16</td>
<td>2.67</td>
<td>0.35</td>
<td>0.32 – 0.48</td>
<td>Dense</td>
</tr>
<tr>
<td>17</td>
<td>4.02</td>
<td>0.41</td>
<td>0.32 – 0.48</td>
<td>Dense</td>
</tr>
<tr>
<td>18</td>
<td>3.12</td>
<td>0.39</td>
<td>0.32 – 0.48</td>
<td>Dense</td>
</tr>
<tr>
<td>19</td>
<td>4.02</td>
<td>0.33</td>
<td>0.32 – 0.48</td>
<td>Dense</td>
</tr>
<tr>
<td>20</td>
<td>6.15</td>
<td>0.42</td>
<td>0.32 – 0.48</td>
<td>Dense</td>
</tr>
</tbody>
</table>
4. Conclusion and recommendation

4.1. Conclusion
The largest area of vegetation density class in the coastal villages of Tapanuli Tengah Regency and Sibolga City in 2007 was very dense class with a total area of 73,745.01 Ha or 85.27%, while in 2017 the largest area was the dense class with a total area of 51,852.18 Ha or 59.95%. The biggest changes in vegetation density class from 2007 until 2017 were the 62.48% decrease in very dense class and the 50.75% increase in dense class. The land cover of the largest vegetation density class was the forest land cover type in dense vegetation density class.

4.2. Recommendation
Several human activities have the potential to damage and threaten the coastal vegetation conservation such as illegal logging and land conversion for other uses. Therefore, the preservation of coastal vegetation is very much needed to maintain its sustainability. Community participation, thus, is essential in the management of coastal vegetation.

Acknowledgment
This research was funded by TALENTA program of Sumatera Utara University year 2017 on Basics Research Schem.

5. References
