International Conference on Agriculture, Environment, and Food Security

To cite this article: 2018 IOP Conf. Ser. Earth Environ. Sci. 122 011001

View the article online for updates and enhancements.
Conference Information

Dates : November 7 - 8, 2017

Organizer : Faculty of Agriculture
Universitas Sumatera Utara

Venue : Arya Duta Hotel Medan
Jalan Kapten Maulana Lubis No. 8 Medan, Sumatera Utara, Indonesia Phone: +62 61 4572999
Web: http://www.aryaduta.com

Official Language : English

Secretariat : Faculty of Agriculture Universitas Sumatera Utara
Jl. Dr. A. Sofyan No. 3 Kampus USU Medan Sumatera Utara, Indonesia

Email : aefs@usu.ac.id
aefsfpusu2017@gmail.com

Conference Website : https://ocs.usu.ac.id/AEFS/AEFS2017/index
Conference Committee

Chairman : Dr. Ir. Tavi Supriana, M.Si
Co-chair : Ir. Revandy Damanik, M.Sc, Ph.D
 Dr. Lisnawita, SP, M.Si
Secretary : Riswanti Sigalingging, STP, M.Si, Ph.D
Honorary Board : Prof. Dr. Runtung, SH, MHum
 Prof. Ing. Vladimir Jurcha, CSc
 Prof. Dr. Ing. Frantisek Kumhala
 Dr. Ir. Hasanuddin, MS
 Drs. Mahyuddin K M Nasution, M.I.T, Ph.D

Scientific Committee (Reviewer): Prof. Carolee T. Bull, Ph.D (USA)
 Dr. Ian T. Riley (Australia)
 Prof. Dr. Erman Munir, M.Sc (Indonesia)
 Prof. Dr. Abdul Razak Alimon (Malaysia)
 Prof. Dr. Purwiyatno Hariyadi (Indonesia)
 Ing. Abraham Kabutey, Ph.D (Czech Republic)
 Prof. Dr. David B. Weaver (USA)
 Dr. Rich Llewelyn (USA)
 Prof. Dr. Ir. Cece Sumantri, M.Agr Sc (Indonesia)
 Prof. Edison Purba, Ph.D (Indonesia)
 Riswanti Sigalingging, STP, M.Si, PhD (Indonesia)
Local Committee:

1. Prof. Dr. Ir. Darma Bakti, MS
2. Dr. Eriyusni, M.Sc
3. Dr. Ir. Yaya Hasanah, M.Si
4. Dr. Ir. Elisa Julianti, M.Si
5. Dr. Ir. Ma’ruf Tafsin, M.Si
6. Dr. Khairenissna, SP, MP
7. Irdia Safni, SP, MCP, Ph.D
8. Ir. Diana Chalil, M.Si, Ph.D
9. Era Yusairini, S.TP, M.Si
10. Ir. Hotnida Sinaga, M.Phil, Ph.D
11. Rulianda Wibowo, SP, M.Sc, Ph.D
12. Lukman Adlin Harahap, STP, M.Si
13. Delima Lailan S. Nasution, S.TP, M.Sc
14. Nazif Ichwan, S.TP, M.Si
15. Achmad Sadeli , S.Pt, M.Sc
16. Fuad Hasan, S.Pt, M.Si
17. Tati Vidiana, S.Pt, M.S
18. Indra Elizar
19. Arung Buana
20. Antasari Malau
21. Kenzi
22. Hermanyanto Laia
23. Nisrina Hayati
24. Bobby Manullang
25. Stefani Limanto
26. Yerika
27. Sonia
28. Nina Unzila Angkat
29. Sylvia Bianca Sihombing
Venue Map

Arya Duta Hotel Medan
Jalan Kapten Maulana Lubis No. 8 Medan, Sumatera Utara, Indonesia
Phone: +62 61 4572999
Introduction and Photographs

To cite this article: 2018 IOP Conf. Ser.: Earth Environ. Sci. 122 011002

View the article online for updates and enhancements.
Introduction

First of all let us praise and thank the presence of Allah Almighty, for the abundance of grace and the joy all of us can still gather in this place in good health. We would like to take this opportunity to tell you that this is our honour and privilege to welcome you here.

The honorable:
 _ Rector of Universitas Sumatera Utara, Prof. Dr. Runtung, MHum
 _ Dean of Faculty of Agriculture Universitas Sumatera Utara: Dr. Ir. Hasanuddin, M.S.
 _ Keynote Speakers:
 1. Prof. Dr. Chris Franco (University of Flinders, Australia)
 2. Prof. David Herak (Czech University of Life Science, Prague)
 3. Mirza Hasanuzzaman (Sher-e-Bangla Agricultural University, Bangladesh)
 4. Dr. Janice Sher Huay Lee (Nanyang Technology University, Singapore)
 5. Dr. Ir. Anton Apriyantono, MS (Former Minister of Agriculture, Indonesia)

The distinguished guests from all around the world

I am greatly honored to welcome you to the first International Conference on Agriculture, Environment, and Food Security (AEFS) 2017. AEFS conference aims to offer the opportunity for knowledge sharing, networking, and collaboration between engineers, scientists, and technologists as well as academician and researchers working in the specific areas of agriculture, social economics, biosystems engineering and food technology. For this year the committee has chosen “Agriculture, Plantation and Livestock for World Food Security” as the main theme, with 6 selected tracks including Agricultural Engineering, Agricultural Economics, Plant Science (Agronomy and Plantation, Plant Breeding, Biotechnology, Integrated Pest Management and Soil Science), Animal Science, Food Science and Technology, Marine and Fisheries Sciences. This conference is organized by The Faculty of Agriculture, University of Sumatera Utara (USU) as an annual event to celebrate the faculty anniversary and fully supported by Czech University of Life Sciences, Prague (CULS), The Institution of Engineers Indonesia (IEI/PII), Indonesian Association of Food Technologist (IAFT/PATPI), Indonesian Society of Agricultural Economics (ISAE/PERHEPI), Indonesian Association of Biochemistry and Biology Molecular (IABBM/PBBMI), The Indonesian Agronomy Association (IAA/PERAGI), Weed Science Society of Indonesia (WSSI/HIGI), Indonesian Phytopathological Society (IPS/PFI) and The Indonesian of Plant Breeding Society (IPBS/PERIPI). The AEFS 2017 program consists of the interactive presentation sessions, keynote speaking and social events including networking dinner and post-conference tour.
There are 220 papers that have been submitted to AEFS’ committee, but after the reviewing process there are 142 papers which have been approved. International seminar has been held for 2 days from 7th – 8th of November 2017 in Aryaduta Hotel with various important agenda.

I would like to express my appreciation to the presenters who are coming from the university in Indonesia, Czech Republic (Czech University of Life Science Prague), Australia (The University of Queensland), Ghana (CSIR - Council for Scientific and Industrial Research - Ghana - SARI), Japan (University of the Ryukyus, Nishihara), Turkey (Ondokuz Mayis University, Samsun) and chairs of all the sessions. You deserve it and I think we would all agree that the quality of the presentations and the papers for this conference have been of a very high standard.

I hope you will have a pleasant post-conference tour and journey to your home countries. I look forward to seeing you on second ICAEFS 2018.

My personal respect and thanks goes out to all of you
Chair of the Organizing Committee of ICAEFS 2017
Dr. Ir. Tavi Supriana, MS
Peer review statement

To cite this article: 2017 IOP Conf. Ser.: Earth Environ. Sci. 51 011003

View the article online for updates and enhancements.
Peer review statement

All papers published in this volume of *IOP Conference Series: Earth and Environmental Science* have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.
Root morphology of several potato varieties – infected Meloidogyne spp. and addition of organic matters

To cite this article: K Lubis et al 2018 IOP Conf. Ser.: Earth Environ. Sci. 122 012025

View the article online for updates and enhancements.

Related content

- Use of organic waste as biofumigant for controlling root knot nematodes (Meloidogyne spp.) on potato
 D I P Sari, Lisnawita, S Oemry et al.

- The potential of soil fungi associated with potato rhizosphere to control root knot nematode (Meloidogyne spp.) on potato
 E Utari, Lisnawita, I Safni et al.

- Differences in morphology and sugar content of purple sweet potato (Ipomoea batatas L.) with potassium treatment at several altitudes
 R Sulistiani, Rosmayati, L A M Siregar et al.
Root morphology of several potato varieties – infected *Meloidogyne* spp. and addition of organic matters

K Lubis*, A M Lubis¹, L A M Siregar¹, Lisnawita¹, I Safni¹ and A R Tantawi²

¹ Department of Agrotechnology, Faculty of Agriculture, Universitas Sumatera Utara, Jl. Prof. A. Sofyan No. 3, Medan 20155, Indonesia
² Department of Agrotechnology, Faculty of Agriculture, University of Medan Area, Jl. Kolam No. 1 Medan Estate, Medan 20233, Indonesia
*E-mail: nisalbz@gmail.com

Abstract. This research was aimed to determine root morphology of several potato varieties which were applied by organic materials into the planting medium inoculated nematodes. The research was conducted at Research Station of Horticulture in Berastagi, Sumatera Utara on May to November 2016. The randomized block design was used with two factors; the first factor was K₁ = Positive control (no use compost / inoculation of nematodes) K₂ = Negative control (no use compost / no inoculation of nematodes) K₃ = Using compost mucuna and inoculation of nematode, K₄ = Using compost peanuts and inoculation of nematodes and the second factor was potato varieties (Tenggo, Maglia, and Margahayu). The results showed that organic matters increased the shoot fresh weight, the root fresh weight, the tubers weight and the number of tubers, root diameter, root length. However, organic matters also increased the number of nematodes. Varieties of Tenggo and Maglia showed significant affect to all observed characters. The interaction of the two treatments had significant affect to the shoot fresh weight, the number of root-knot, and the number of tubers, root length. However, no significant affect was observed in root wet weight, and tuber weight.

1. Introduction

Potato (*Solanum tuberosum* L.) is an important crop in Indonesia. In terms of the value of its nutrition, is one type of potato tubers that can serve as a potential source of nutrition. The nutritional substances contained in Potato tubers, among others, carbohydrates, minerals, iron, magnesium, phosphorus, sodium, calcium and potassium, protein and vitamins especially vitamin C and vitamin B1. In addition, the potatoes also contain fat in relatively small amounts, i.e., of 1.0-1.5 percent [1]. Based on the data of the Central Bureau Of Statistics in district of Berastagi in 2015. Potato production in 2014 of 2,333 tons with an area 147 Ha harvest, while in 2013 with a vast harvest 104 Ha was able to produce production 2,754 tons. Based on the above it can be concluded that there has been a significant decline in spite of the addition of a vast harvest [2].

One of the causes of the decline in crop production is the presence of plant pest organism, one of which is root-knot nematodes (*Meloidogyne* spp.). In addition to attacking the potato nematodes also attacked crops of tomatoes, cucumbers, carrots and others [3].
Control efforts have been done in an attempt to suppress the nematode population density in the field. One of these by using nematicide. Different types of nematicide that can be used to take control of *Meloidogyne spp.* such as Furadan, Carbofuran, Fenamilos and others. The effectiveness of nematicide depends on the dose and mode of application [4].

Nematode control with use of chemical nematicide still play an important role. This occurs because other means of control have not been able to provide satisfactory results. But controlling nematodes with nematicide may cause negative effects for the environment and the organism was not target. This is because the nematicide can be toxic to humans and pets. Additionally nematicide can be persistent in the soil, causing soil to water pollution, as well as a slew of other organism they are not natural enemies include target nematodes such as fungi, bacteria and other microorganisms. In an attempt to maintain environmental sustainability, control of nematodes is directed at controlling biological basis like using antagonistic microorganisms (natural enemies), organic materials, crop plants, and plants that are nutritious as pesticides [5]. Legumes can serve as an amendment to the soil and plants cover the soil to reduce the population of nematodes. Plant legumes can produce organic material such as a Lectin, Rotenone Deguelin, and Tephrosin are used as pesticides. The use of nuts as organic amendment to pest control may not yet be widely practice except in the developing countries, but the practice is likely to be one of the alternatives in the future. Most species examined to start constituent legumes nematicidal [6].

One of the techniques of breeding resistance disease that using varieties resistant. Resistant varieties are varieties of plant that have the ability to reject or avoid, recover back from the attack of pests or disease. Resistant varieties are varieties that are able to produce more and better compared to other varieties of pest populations at the level of the same [7].

2. Material and methods

The research was conducted at Research Station of Horticulture in Berastagi, Sumatera Utara on May to November 2016. The randomized block design was used with two factors ; the first factor was organic materials (mucuna and peanut compost) and the second factor was potato varieties (Tenggo, Maglia, and Margahayu). Against a significant variety of prints, continued follow-up analysis by using Duncan Multiple Range Test at a 5% level [8]. The materials used were plant seed potato varieties (Tenggo, Margahyu, Maglia), waste plant, Leguminocae (peanuts, mucuna), top soil, the roots-knot of tomato plants.

2.1. Estimation of genetic parameter

Prediction component of genetic diversity, variance of interaction genotype and environment, environmental diversity and variance of phenotypes. Performed in the following way :

\[\sigma^2_e = M1 \]
\[\sigma^2_g = \frac{M3-M2}{rl} \]
\[\sigma^2_p = \sigma^2_g + \frac{\sigma^2_{AB}}{l} + \frac{\sigma^2_g}{rl} \]

Description: \(\sigma^2_e \) = error variance ; \(\sigma^2_g \) = genetic variance ; \(\sigma^2_p \) = phenotype variance ; \(\sigma^2_{AB} \) = interaction genetic and environment variance

The value of heritability (\(h^2 \)) in the broad sense is :

\[\text{Heritability} \ h^2 \ \text{mean base} = \frac{\sigma^2_g}{\sigma^2_p} \times 100\% \]

Broad or narrow of genetic diversity value of a character depends on genetic variance. Coefficient of genetic variance predictable by knight equation

\[\text{Coefficient genetic variance} = CGV = (\sqrt{\frac{\sigma^2_g}{\sigma^2_p}} \times 100\% \]

2
Description: σ_g^2, genetic variance

Criteria: narrow coefficient genetic diversity (0-10%) moderate (10-20%) and wide (>20%).

2.2. Correlation

Analysis correlation was used to determine character related to main characters, to improve the follow response in the implementation of indirect selection. Analysis of correlation calculated by Gaspersz

$$r_{xy} = \frac{n \sum x_i y_i - (\sum x_i)(\sum y_i)}{\sqrt{(n \sum x_i^2 - (\sum x_i)^2)(n \sum y_i^2 - (\sum y_i)^2)}}$$

Description: r_{xy} = correlation of variable x and y; n = number of observations object; x = value of variable x; and y = value of variable y. This analysis can be used to find out which morphology characters correlated with outcomes, so it can be made into character selection.

3. Results and Discussions

The results (Table 1,2,4,5,6,7) in some varieties of potatoes with the applied of the organic material showed that the applied of the organic material in the form of compost peanut and mucuna would increased all parameters, because with the applied of the organic material will increase the availability of nutrient elements in soil, improve the structure of the soil and improve soil in water binding, so plants can grow and thrive [9].

<table>
<thead>
<tr>
<th>Organic materials</th>
<th>Varieties</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V1</td>
<td>V2</td>
</tr>
<tr>
<td>K1</td>
<td>5.67cd</td>
<td>8.93c</td>
</tr>
<tr>
<td>K2</td>
<td>3.36de</td>
<td>8.18c</td>
</tr>
<tr>
<td>K3</td>
<td>19.97b</td>
<td>35.99a</td>
</tr>
<tr>
<td>K4</td>
<td>20.19b</td>
<td>17.23b</td>
</tr>
</tbody>
</table>

Mean 12.3b 17.58a 4.2c

Description: K1 = Positive control (no use compost / inoculation of nematodes) K2 = Negative control (no use compost / no inoculation of nematodes) K3 = Using compost mucuna and inoculation of nematode. K4 = Using compost peanuts and inoculation of nematodes. V1 = Tenggo variety. V2 = Maglia variety. V3 = Margahayu variety. The figures followed a different letter notation is different based on the significant test of multiple distance duncan at a 5% level.

The results (Table 3) in some varieties of potatoes with the applied of the organic material showed that the applied of the organic material in the form of compost peanut and compost mucuna can not suppress the growth and development of nematodes.

However, the granting of organic compost and compost peanut mucuna shows the result of a higher number of root-knot than positive control (no use compost / inoculation of nematodes). This is due to the applied of the organic material in the form of composting and compost soil mucuna beans are able to improve the physical properties of the soil, keeping the water availability in the soil pore spaces of the soil as well as add that makes soil conditions supporting the growth and development of nematode[9]. Yet despite the number of root-knot administering more organic matter in the form of composting and compost soil mucuna beans is capable of supporting the growth and development of the plant so that plant potatoes stay afloat against attack nematodes.
Table 2. The root fresh weight on each treatment organic materials and potato varieties

<table>
<thead>
<tr>
<th>Organic Materials</th>
<th>Varieties</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V1</td>
<td>V2</td>
</tr>
<tr>
<td>K1</td>
<td>2.04</td>
<td>2.76</td>
</tr>
<tr>
<td>K2</td>
<td>0.66</td>
<td>3.08</td>
</tr>
<tr>
<td>K3</td>
<td>5.93</td>
<td>8.52</td>
</tr>
<tr>
<td>K4</td>
<td>3.07</td>
<td>8.56</td>
</tr>
</tbody>
</table>

Mean 2.93b 5.73a 1.15c

Description: K1 = Positive control (no use compost / inoculation of nematodes) K2 = Negative control (no use compost / no inoculation of nematodes) K3 = Using compost mucuna and inoculation of nematode. K4 = Using compost peanuts and inoculation of nematodes. V1 = Tenggo variety. V2 = Maglia variety. V3 = Margahayu variety. The figures followed a different letter notation is different based on the significant test of multiple distance duncan at a 5% level.

Table 3. Number of root-knot on each treatment organic materials and potato varieties

<table>
<thead>
<tr>
<th>Organic Materials</th>
<th>Varieties</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V1</td>
<td>V2</td>
</tr>
<tr>
<td>K1</td>
<td>169.44cd</td>
<td>232.89c</td>
</tr>
<tr>
<td>K2</td>
<td>1.89e</td>
<td>2.22e</td>
</tr>
<tr>
<td>K3</td>
<td>384.22b</td>
<td>406.89b</td>
</tr>
<tr>
<td>K4</td>
<td>358b</td>
<td>501a</td>
</tr>
</tbody>
</table>

Mean 228.39a 285.75a 63.81b

Description: K1 = Positive control (no use compost / inoculation of nematodes) K2 = Negative control (no use compost / no inoculation of nematodes) K3 = Using compost mucuna and inoculation of nematode. K4 = Using compost peanuts and inoculation of nematodes. V1 = Tenggo variety. V2 = Maglia variety. V3 = Margahayu variety. The figures followed a different letter notation is different based on the significant test of multiple distance duncan at a 5% level.

Table 4. The root diameter on each treatment organic materials and potato varieties

<table>
<thead>
<tr>
<th>Organic Materials</th>
<th>Varieties</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V1</td>
<td>V2</td>
</tr>
<tr>
<td>K1</td>
<td>5.26</td>
<td>6.12</td>
</tr>
<tr>
<td>K2</td>
<td>4.17</td>
<td>5.42</td>
</tr>
<tr>
<td>K3</td>
<td>5.83</td>
<td>6.74</td>
</tr>
<tr>
<td>K4</td>
<td>4.93</td>
<td>8.78</td>
</tr>
</tbody>
</table>

Mean 5.05b 6.77a 4.18b

Description: K1 = Positive control (no use compost / inoculation of nematodes) K2 = Negative control (no use compost / no inoculation of nematodes) K3 = Using compost mucuna and inoculation of nematode. K4 = Using compost peanuts and inoculation of nematodes. V1 = Tenggo variety. V2 = Maglia variety. V3 = Margahayu variety.
variety. The figures followed a different letter notation is different based on the significant test of multiple distance duncan at a 5% level.

Based on the results of (Table 1-7) Tenggo varieties and maglia varieties showed better result on all parameters than margahayu varieties. It is alleged to be caused by the nature of the distinction or excellence of each variety complies with its own genotype.

Table 5. The root length on each treatment organic materials and potato varieties

<table>
<thead>
<tr>
<th>Organic Materials</th>
<th>Varieties</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V1</td>
<td>V2</td>
</tr>
<tr>
<td>K1</td>
<td>25.78b</td>
<td>24.06bc</td>
</tr>
<tr>
<td>K2</td>
<td>22.44bc</td>
<td>35.28a</td>
</tr>
<tr>
<td>K3</td>
<td>30.89a</td>
<td>34.22a</td>
</tr>
<tr>
<td>K4</td>
<td>33.06a</td>
<td>35.00a</td>
</tr>
</tbody>
</table>

Mean 28.04b 32.14a 16.76c

Description: K1 = Positive control (no use compost / inoculation of nematodes) K2 = Negative control (no use compost / no inoculation of nematodes) K3 = Using compost mucuna and inoculation of nematode. K4 = Using compost peanuts and inoculation of nematodes. V1 = Tenggo variety. V2 = Maglia variety. V3 = Margahayu variety. The figures followed a different letter notation is different based on the significant test of multiple distance duncan at a 5% level.

Table 6. The tubers weight on each treatment organic materials and potato varieties

<table>
<thead>
<tr>
<th>Organic Materials</th>
<th>Varieties</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V1</td>
<td>V2</td>
</tr>
<tr>
<td>K1</td>
<td>9.12</td>
<td>13.19</td>
</tr>
<tr>
<td>K2</td>
<td>15.11</td>
<td>12.40</td>
</tr>
<tr>
<td>K3</td>
<td>48.97</td>
<td>51.88</td>
</tr>
<tr>
<td>K4</td>
<td>42.10</td>
<td>44.35</td>
</tr>
</tbody>
</table>

Mean 28.82a 30.45a 13.53b

Description: K1 = Positive control (no use compost / inoculation of nematodes) K2 = Negative control (no use compost / no inoculation of nematodes) K3 = Using compost mucuna and inoculation of nematode. K4 = Using compost peanuts and inoculation of nematodes. V1 = Tenggo variety. V2 = Maglia variety. V3 = Margahayu variety. The figures followed a different letter notation is different based on the significant test of multiple distance duncan at a 5% level.

Table 7. The number of tubers on each treatment organic materials and potato varieties

<table>
<thead>
<tr>
<th>Organic Materials</th>
<th>Varieties</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V1</td>
<td>V2</td>
</tr>
<tr>
<td>K1</td>
<td>3.78de</td>
<td>3.00ef</td>
</tr>
<tr>
<td>K2</td>
<td>2.56fg</td>
<td>1.89g</td>
</tr>
<tr>
<td>K3</td>
<td>10.56a</td>
<td>7.78b</td>
</tr>
<tr>
<td>K4</td>
<td>9.22a</td>
<td>7.11b</td>
</tr>
</tbody>
</table>

Mean 6.53a 4.94b 3.36c
Description: K1 = Positive control (no use compost / inoculation of nematodes) K2 = Negative control (no use compost / no inoculation of nematodes) K3 = Using compost mucuna and inoculation of nematode. K4 = Using compost peanuts and inoculation of nematodes. V1 = Tenggo variety. V2 = Maglia variety. V3 = Margahayu variety. The figures followed a different letter notation is different based on the significant test of multiple distance duncan at a 5% level.

The value of the heritability some of the varieties tested showed high criteria (Table 8). This show that some varieties are tested against genetic diversity contributes to phenotype in some organic material tested.

Table 8. The value of the expect variety genotype and heritability broad sense as well as coefficients of genetic diversity

<table>
<thead>
<tr>
<th>Characters</th>
<th>σ^2G</th>
<th>h^2_{bs}</th>
<th>Criteria</th>
<th>CGD(%)</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoot fresh weight</td>
<td>5373</td>
<td>0.97</td>
<td>High</td>
<td>2.50</td>
<td>High</td>
</tr>
<tr>
<td>Root fresh weight</td>
<td>700.08</td>
<td>0.99</td>
<td>High</td>
<td>1.06</td>
<td>High</td>
</tr>
<tr>
<td>Root length</td>
<td>8414.76</td>
<td>0.99</td>
<td>High</td>
<td>3.57</td>
<td>High</td>
</tr>
<tr>
<td>Root diameter</td>
<td>225.96</td>
<td>0.99</td>
<td>High</td>
<td>2.82</td>
<td>High</td>
</tr>
<tr>
<td>Number of root-knot</td>
<td>1653651</td>
<td>0.98</td>
<td>High</td>
<td>146.96</td>
<td>High</td>
</tr>
<tr>
<td>Number of tubers</td>
<td>311.28</td>
<td>0.98</td>
<td>High</td>
<td>0.08</td>
<td>High</td>
</tr>
<tr>
<td>Tubers weight</td>
<td>11317.56</td>
<td>0.99</td>
<td>High</td>
<td>02.23</td>
<td>High</td>
</tr>
</tbody>
</table>

Description: σ^2G = Genotype variety. h^2_{bs} = heritability broad sense. CGD = Coefficient of genetic diversity

Based on the correlation of (Table 9) can be seen that all the parameters are correlated positively indicated by the value of the correlation that is very significant. This shows that every parameter is correlated with each other.

Table 9. Corelation between morphological Characters with the Character of production and the number of root-knot potatoes

<table>
<thead>
<tr>
<th></th>
<th>RL</th>
<th>TW</th>
<th>NT</th>
<th>SFW</th>
<th>RFW</th>
<th>NRK</th>
</tr>
</thead>
<tbody>
<tr>
<td>TW</td>
<td>0.565**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NT</td>
<td>0.482**</td>
<td>0.819**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SFW</td>
<td>0.615**</td>
<td>0.792**</td>
<td>0.749**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RFW</td>
<td>0.624**</td>
<td>0.772**</td>
<td>0.577**</td>
<td>0.797**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRK</td>
<td>0.554**</td>
<td>0.745**</td>
<td>0.787**</td>
<td>0.777**</td>
<td>0.790**</td>
<td></td>
</tr>
<tr>
<td>RD</td>
<td>0.557**</td>
<td>0.486**</td>
<td>0.437**</td>
<td>0.557**</td>
<td>0.722**</td>
<td>0.661**</td>
</tr>
</tbody>
</table>

Description: RL = root length. RD = root diameter. TW = tubers weight. RFW = root fresh weight. NRK = number of root-knot. SFW = shoot fresh weight. NT = number of tubers. * = corellate the significant on the extent 0.05; ** = corellate the significant on the extent 0.01.

4. Conclusions

1. Varieties Tenggo and Maglia shows growth and better production compared with margahayu varieties based on The shoot fresh weight. root fresh weight. tubers weight and number of tuber.
2. Applied organic materials compost peanut and compost mucuna can increase the growth and production of potato plants on medium inoculated nematodes
3. Highly heritability and correlation show on shoot fresh weight, root fresh weight, root length, root diameter, number of root-knot, number of tubers, and tubers weight. All parameters shown significant correlation. That means all parameters: shoot fresh weight, root fresh weight, root length, root diameter, number of root-knot, number of tubers, and tubers weight potentially used for character selection to early selected resistance varieties to nematode

References

Acknowledgements
This Research is part of The National Competitif Research on Scheme National Strategys (Stranas) (2016-2017) from The Ministry of Research. Technology. and Higher Education