1st International Conference on Applied & Industrial Mathematics and Statistics 2017 (ICoAIMS 2017)

To cite this article: 2017 J. Phys.: Conf. Ser. 890 011001

View the article online for updates and enhancements.

Related content
- Some Pictures of The 2015 International Conference on Mathematics, its Applications, and Mathematics Education
 Sudi Mungkasi
- The First International Conference on Physics, Mathematics and Statistics (ICPMS2018)
- Committee of The 2015 International Conference on Mathematics, its Applications, and Mathematics Education
1st International Conference on Applied & Industrial Mathematics and Statistics 2017 (ICoAIMS 2017)
8-10th August 2017, Vistana City Centre, Kuantan, Pahang, Malaysia.

1st International Conference on Applied & Industrial Mathematics and Statistics 2017 (ICoAIMS 2017) is organised by Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Malaysia. Our co-organisers are Institut Teknologi Sepuluh (ITS) Nopember, Surabaya, Indonesia, Society of Industrial and Applied Mathematics (SIAM), Malaysian Mathematical Sciences Society (PERSAMA) and Malaysian Institute of Statistics (ISM). This international conference is a biannual conference, started in 2017. The main topics of the conference is divided into six categories; Pure Mathematics, Applied Mathematics, Computational Mathematics, Statistics & Applied Statistics, Operational Research and Mathematics Education including Engineering & Industrial Applications.

The keynote presentations are provided especially to show the contribution of Mathematician and Statistician in engineering and industrial application towards research and knowledge sharing where our conference theme for this year is ‘Bridging Mathematics & Industry’. We have five keynote speakers which from Department of Statistics Malaysia, Creative Vision Sdn. Bhd., Malaysia, Universiti Pertahanan Nasional, Malaysia and Institut Teknologi Sepuluh Nopember (ITS), Indonesia.

ICoAIMS 2017 was an overwhelming success, attracting the delegates, speakers and sponsors from many countries and provided great intellectual and social interaction for the participants. Without their support, the conference would not have been the success that it was. I trust that all the participants found their involvement in the Conference both valuable and rewarding. Once again, I would like to convey my deepest appreciation for all contributions and wish you success in the years ahead. Hope to see you again at ICoAIMS 2019.

Editor in Chief
Dr. Noryanti Muhammad
Organising Committee

Chairman:
Assoc. Prof. Dr. Mohd Zuki Salleh

Co-Chairman:
Dr. Roslinazairimah Zakaria

Secretary 1:
Dr. Zulkhibri Ismail

Secretary 2:
Dr. Norhayati Rosli

Treasurer:
Dr. Nor Aida Zuraimi Md Noar
Dr. Muhammad Azrin Ahmad
Miss Norhanani Yusof

Sponsorship:
Dr. Abdul Rahman Mohd Kasim
Dr. Noraziah Adzhar
Miss Rozieana Khairuddin

Logistic:
Dr. Mohd Sham Mohamad
Dr. Chuan Zun Liang
Mr. Abd Latip Hj Dris
Mr. Mohd Farid Jaafar
Mr. Muhamad Husaini Sulaiman
Mr. Muhammad Halim Paboh

Registration & Souvenirs:
Dr. Yuhani Yusof
Dr. Noratikah Abu
Mrs. Anida Abdullah

Publicity & Website:
Dr. Nor Alisa Mohd Damanhuri
Miss Norhafizah Md Sarif
Miss Laila Amea Aziz
Mr. Adam Samsudin
Mr. Azman Md Diah

Protocol:
Dr. Wan Syahidah Wan Yusoff
Mrs. Azlyna Senawi
Mrs. Siti Fatimah Ahmad Zabidi
Mrs. Nor Izzati Jai

Proceedings & Journals Publication:
Dr. Noryanti Muhammad
Assoc. Prof. Dr. Anvarjon Ahmedov
Ahatjonovich
Dr. Adam Shariff Adli Aminuddin
Dr. Siti Zanariah Satari
Dr. Norazaliza Mohd. Jamil
Dr. Mohd Khairul Bazli Mohd Aziz
Mrs. Najihah Mohamad
Mrs. Siti Roslindar Yaziz
Mrs. Intan Sabariah Sabri
Scientific Committee

Prof. Frank Coolen, University of Durham, UK
Prof. Qi Wang, University of South Carolina, US
Dr. Paula Vasquez, University of South Carolina, US
Prof. Dr. Basuki Widodo, Sepuluh Nopember Institute of Technology, Indonesia
Prof. Dr. Erna Apriliani, Sepuluh Nopember Institute of Technology, Indonesia
Prof. Dr. Mohammad Isa Irawan, Sepuluh Nopember Institute of Technology
Dr. Imam Mukhlash, Sepuluh Nopember Institute of Technology, Indonesia
Dr. Suhartono, Sepuluh Nopember Institute of Technology, Indonesia
Prof. Dr. Norhaniza Sarmin, Universiti Teknologi Malaysia
Prof. Dr. Shaharuddin Salleh, Universiti Teknologi Malaysia
Prof. Dr. Muhammad Hsyam Lee, Universiti Teknologi Malaysia
Prof. Dr. Tahir Ahmad, Universiti Teknologi Malaysia
Assoc. Prof. Dr. Ali Hassan Mohamed Murid, Universiti Teknologi Malaysia
Assoc. Prof. Dr. Sharidan Shafiee, Universiti Teknologi Malaysia
Dr. Yeak Su Hoe, Universiti Teknologi Malaysia
Prof. Dr. Anuar Ishak, Universiti Kebangsaan Malaysia
Prof. Dr. Maslina Darus, Universiti Kebangsaan Malaysia
Prof. Dr. Roslinda Mohd Nazar, Universiti Kebangsaan Malaysia
Assoc. Prof. Dr. Lok Yian Yian, Universiti Sains Malaysia
Assoc. Prof. Dr. Suzilah Ismail, Universiti Utara Malaysia
Assoc. Prof. Dr. Maznah Mat Kasim, Universiti Utara Malaysia
Assoc. Prof. Dr. Mohd Kamal Mohamad Nawawi, Universiti Utara Malaysia
Assoc. Prof. Dr. Azizan Saaban, Universiti Utara Malaysia
Prof. Dr. Adem Kilicman, Universiti Putra Malaysia
Prof. Dr. Zanariah Abdul Majid, Universiti Putra Malaysia
Assoc. Prof. Dr. Norhan Ariffin, Universiti Putra Malaysia
Prof. Dr. Mohd Lazim Abdullah, Universiti Malaysia Terengganu
Prof. Dr. Mustafa Mamat, Universiti Sultan Zainal Abidin
Assoc. Prof. Dr. Mohd Zuki Salleh, Universiti Malaysia Pahang
Assoc. Prof. Dr. Mohd Rashid Ab Hamid, Universiti Malaysia Pahang
Assoc. Prof. Dr. Anvarjon Ahmedov Ahatjonovich, Universiti Malaysia Pahang
Dr. Roslinazairimah Zakaria, Universiti Malaysia Pahang
Dr. Norhayati Rosli, Universiti Malaysia Pahang
Dr. Mohd Sham Mohamad, Universiti Malaysia Pahang

Keynotes Speakers

- Dr. Mohd Uzir Mahdin (Chief Statistician, Department of Statistics Malaysia)
- Prof. Dr. Basuki Widodo (Institut Teknologi Sepuluh Nopember (ITS), Indonesia)
- Mr. Nor Azmi Abdul Rahim (Senior Consultant, Creative Vision Sdn. Bhd., Malaysia)
- Prof. Dr. Abdul Ghapor Hussin (Universiti Pertahanan Nasional, Malaysia)
- Dr. Subiono (Institut Teknologi Sepuluh Nopember (ITS), Indonesia)
Peer review statement

To cite this article: 2017 IOP Conf. Ser.: Mater. Sci. Eng. 180 011002

View the article online for updates and enhancements.

Start exploring the collection - download the first chapter of every title for free.
Peer review statement

All papers published in this volume of IOP Conference Series: Materials Science and Engineering have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing.
Table of contents

Volume 180

2017

Previous issue Next issue

1st Annual Applied Science and Engineering Conference (AASEC), in conjunction with The International Conference on Sport Science, Health, and Physical Education (ICSSHPE)
16–18 November 2016, Bandung, Indonesia

View all abstracts

Accepted papers received: 21 February 2017
Published online: 22 March 2017

Preface

OPEN ACCESS

1st Annual Applied Science and Engineering Conference (AASEC), in conjunction with The International Conference on Sport Science, Health, and Physical Education (ICSSHPE).

View abstract View article PDF

OPEN ACCESS

Peer review statement

View abstract View article PDF

Papers

OPEN ACCESS

The Profitability Analysis of PT. Garuda Indonesia (Persero) Tbk. Before and After Privatization

I Nurasiah and Anggara
Self-Giving as Spiritual Dimension in Leadership
A Benawa, N Tarigan and S Makmun

Principal Component Analysis and Cluster Analysis in Profile of Electrical System
Iswan and I Garniwa

Maximum Potential of the Car Cabin Temperature in the Outdoor Parking Conditions as a Source of Energy in Thermoelectric Generator
A Sunawar and I Garniwa

Voltage Generation of Three-Phase Double Sided Internal Stator Axial Flux Permanent Magnet (AFPM) Generator
I M W Kastawan and Rusmana

Fire Extinguisher Robot Using Ultrasonic Camera and Wi-Fi Network Controlled with Android Smartphone
B Siregar, H A Purba, S Efendi and F Fahmi

Low Cost, Advanced, Integrated Microcontroller Training Kit
Y Somantri and I Fushshilat

Ecohealth System Dynamic Model as a Planning Tool for the Reduction of Breeding Sites
T Respati, A Raksanagara, H Djuhaeni, A Sofyan and A Shandriasti
Data envelopment analysis with upper bound on output to measure efficiency performance of departments in Malaikulsaleh University

To cite this article: Dahlan Abdullah et al 2017 J. Phys.: Conf. Ser. 690 012102

View the article online for updates and enhancements.

Related content
- Data Envelopment Analysis (DEA) Model in Operation Management
 Meilisa Malik, Syahril Efendi and Muhammad Zarif
- A two stage data envelopment analysis model with undesirable output
 Adam Shariff Adis Anwaruddin, Nur Izzati Jainti, Maznah Mat Kasim et al.
- Estimating Most Productive Scale Size in Data Envelopment Analysis with Integer Value Data
 Yunita Dewi Sari, Layla Angris S, Syahril Efendi et al.
Data envelopment analysis with upper bound on output to measure efficiency performance of departments in Malaikulsaleh University

Dahlan Abdullah¹, Saib Suwilo², Tulus³, Herman Mawengkang⁴, Syahril Efendi⁵

¹Informatics Department, Malikussaleh University, Lhokseumawe, Aceh, Indonesia
²,³Mathematics Department, University of Sumatera Utara, Medan, Indonesia
⁴Faculty of Computer Science and Information Technology, University Of Sumatera Utara, Medan, Indonesia

E-mail: dahlan@unimal.ac.id, saibwil@gmail.com, tulus@usu.ac.id, hmwengkang@yahoo.com

Abstract. The higher education system in Indonesia can be considered not only as an important source of developing knowledge in the country, but also could create positive living conditions for the country. Therefore it is not surprising that enrollments in higher education continue to expand. However, the implication of this situation, the Indonesian government is necessarily to support more funds. In the interest of accountability, it is essential to measure the efficiency for this higher institution. Data envelopment analysis (DEA) is a method to evaluate the technical efficiency of production units which have multiple input and output. The higher learning institution considered in this paper is Malikussaleh University located in Lhokseumawe, a city in Aceh province of Indonesia. This paper develops a method to evaluate efficiency for all departments in Malikussaleh University using DEA with bounded output. Accordingly, we present some important differences in efficiency of those departments. Finally we discuss the effort should be done by these departments in order to become efficient.

Keywords: Data Envelopment Analysis, Efficiency, Higher education, Performance measurement, Output upper bound.

1. Introduction
In Indonesia, universities as higher learning institutions (HLIs) carry great responsibilities toward increasing the living quality of people, developing the welfare of the country and enhancing scientific knowledge. Due to these reasons, the Indonesian Government has put more effort to increase fund to support the educational processes of the HLIs.

It is common in the higher education sectors in Indonesia to obtain some of their financial support from public funding, particularly from students' tuition fee. The same situation also happens in the HLI Malaikulsaleh University, located in Lhokseumawe city of Aceh province, Indonesia.

In the interest of accountability, it is necessarily to measure the efficiency of Malikussaleh University, as the main focus for this research. However, it should be noted that the HLIs sector has characteristics which make it difficult to measure efficiency. HLIs can be regarded as non-profit organization, there would be no output and input in terms of prices. These sectors could produce multiple outputs from multiple inputs.
Generally, efficiency can be thought as a ratio between output and input. However, it should be noted that the ratio is only valid for one output and one input, meaning that this thought is inadequate if there are multiple outputs and inputs. [1] addressed a method to measure efficiency with multiple outputs and inputs, called relative efficiency, by calculating the ratio of weighted sum of outputs and weighted sum of inputs. Then, Charnes, Cooper and Rhodes (CCR) [2] extended Farrell’s idea to develop a methodology for evaluating the relative efficiencies of a set of decision making units (DMUs). This methodology is called Data Envelopment Analysis (DEA). Therefore in DEA we should have a set of DMUs, multiple outputs and multiple input. In higher education system DMU could be Departments to produce 2 outputs, such as number of graduates (y_1) and number of publications (y_2), from an input, number of teaching staff (x).

DEA seems to be one of the most suitable method for comparison of efficiency of various units in public services, such as universities [3]. Public services are always influenced by a public policy (government) to give impact whether directly or indirectly to the expenditure spending and other regulation mechanisms. University, as a public service, is provided by various entities (eg. Teaching staff and non-teaching staff) have their own motives to provide services, particularly for students, which are influenced by a whole range of different stakeholders.

Applications of DEA to measure efficiency of university have been discussed by various authors. It should be noted that DEA method does not primarily to measure the efficiency for HLIs. However, due to the fact that universities belong to the organizations which have multiple outputs and inputs without any market prices, DEA is suitable. The first study concerning with the use of DEA in HLI can be found in the PhD thesis of Rhodes [4]. As the HLIs sector, in most countries around the world, is under pressure to increase efficiency and to improve the quality of its educational activity, it is not surprising that most authors discuss the application of DEA in HLIs for their countries.

From literature it can be found that the assessment of efficiency for HLI in UK has gained a lot of attention. [5] have stated that UK can be regarded as the leader in evaluation of university effectiveness. [6] apply DEA to HLIs in England in the period 2000/01 – 2002/03 to assess the cost structure and the performance of various HLI groups. [7] puts forward another example of DEA application for HLIs in England. He examined more than 100 HLIs using data for the year 2000/01, and found out that technical and scale efficiency for English higher education sector appear to be high on average.

[8] consider that higher education sectors which gain much fund from government is necessarily to be assessed their efficiency performance. In order to be able to get the efficiency result they use DEA, using a sample of 33 Poland faculties specialized in social sciences. They use output oriented model of Charnes-Cooper-Rhodes (CCR) with two inputs and three outputs. In order to analyze the level of competitiveness of HEIs in some countries in Europe, [9] use the score of efficiency for each HEI resulting from DEA method. Their main research is to determine the level of competitiveness of higher education of the Republic of Serbia and Autonomous Province of Vojvodina compared to other HEIs in Europe. [10] also use DEA to evaluate efficiency of HLI in Hungary in order to establish competitiveness with HLI in the European countries.

[11] feature DEA to examine the relative efficiency in conducting research of 109 Chinese regular universities for the year 2003 and 2004. The Impact and productivity of research are treated as output variables, and then for the input variables they use number of staff, students, capital and resources. The same kind of research was also conducted by [12]. However they use DEA and stochastic frontier analysis, and the HLI sectors they consider are universities of science and technology in China. The application of DEA to investigate the efficiency assessment of Iranian public universities was proposed by [13].

The aim of this paper is to evaluate efficiency of all department of Malikussaleh University using DEA. The output variables are number of research produced and number of graduates from input variables number of staff and number of students. We use DEA with CCR model with output oriented. In this case the output variables are bounded. For output oriented, the inputs are assumed to be fixed, while the outputs proportionally expanded would be explored. This type of orientation is deemed to
be more appropriate for university education [10]. For further explanation on DEA with output-bounded data can be found in [14].

2. Linear programming model of DEA
The mathematical model of DEA proposed by CCR is a fractional programming aimed to measure the efficiency of any DMU. The objective function of the model is to maximize a ratio of the sum of weighted output and the sum of weighted input with constraints of the similar ratio for every DMU which should be at most one.

The fractional programming model can be expressed as follows.

\[
\text{Maximize} \quad \alpha = \frac{\sum_{j} u_{r} y_{rj}}{\sum_{s} v_{s} x_{sj}}
\]

Subject to

\[
\frac{\sum_{j} u_{r} y_{rj}}{\sum_{s} v_{s} x_{sj}}; \quad j = 1, \ldots, n
\]

\[
\sum_{s} v_{s} x_{sj} \leq 1; \quad s = 1, \ldots, l
\]

\[
u_{r}, v_{s} \geq 0; \quad r = 1, \ldots, k; \quad s = 1, \ldots, l
\]

In the model, there are \(n\) number of DMUs with \(k\) number of outputs resulting from \(l\) number of inputs. \(y_{rj} (>0)\) are the number of output of the \(j\)th DMU and \(x_{sj} (>0)\) are the number of input of the \(j\)th DMU. \(u_{r}\) and \(v_{s}\) are the variable weights to be determined after solving the model.

The model (1) is in the form of fractional programming, it would be computationally intractable particularly when the number of DMUs is large. Therefore it is necessarily to convert the model (1) into a linear programming problem, as proposed by [2], which can be written as follows (output oriented).

\[
\text{Maximize} \quad \beta = \sum_{j} u_{r} y_{rj}
\]

Subject to

\[
\sum_{j} v_{s} x_{sj} = 1;
\]

\[
\sum_{j} u_{r} y_{rj} - \sum_{j} v_{s} x_{sj} \leq 0; \quad \forall j
\]

\[
u_{r}, v_{s} \geq 0 \quad \forall r, \forall s
\]

3. Evaluating the efficiency of each department (DMU) of Malikussaleh University
Malikussaleh University is a state university located at Lhokseumawe city of Aceh province, Indonesia. The name Malikussaleh comes from the name of the first king of the well known kingdom Samudra Pasai. This university has 30 Departments with around 20000 students. The data of 19 Departments (DMU) with two outputs and two inputs is shown in Table 1. There are 11 departments are still new, therefore they do not have graduates yet. As a consequence, these 11 departments are not included in Table 1. The data shown in Table 1 is for the academic year 2016/2017.
Table 1. List of DMU with input and output data.

<table>
<thead>
<tr>
<th>NO</th>
<th>DMU</th>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NUMBER OF</td>
<td>NUMBER OF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TEACHING STAFF</td>
<td>STUDENT</td>
</tr>
<tr>
<td>1</td>
<td>INFORMATION TECHNOLOGY</td>
<td>17</td>
<td>588</td>
</tr>
<tr>
<td>2</td>
<td>CIVIL ENGINEERING</td>
<td>26</td>
<td>747</td>
</tr>
<tr>
<td>3</td>
<td>ARCHITECTURAL ENGINEERING</td>
<td>15</td>
<td>396</td>
</tr>
<tr>
<td>4</td>
<td>INDUSTRIAL ENGINEERING</td>
<td>17</td>
<td>467</td>
</tr>
<tr>
<td>5</td>
<td>CHEMICAL ENGINEERING</td>
<td>25</td>
<td>348</td>
</tr>
<tr>
<td>6</td>
<td>MECHANICAL ENGINEERING</td>
<td>23</td>
<td>499</td>
</tr>
<tr>
<td>7</td>
<td>ELECTRICAL ENGINEERING</td>
<td>19</td>
<td>420</td>
</tr>
<tr>
<td>8</td>
<td>AGRIBUSINESS</td>
<td>17</td>
<td>689</td>
</tr>
<tr>
<td>9</td>
<td>AGROTECHNOLOGY</td>
<td>34</td>
<td>822</td>
</tr>
<tr>
<td>10</td>
<td>AQUACULTURE</td>
<td>10</td>
<td>501</td>
</tr>
<tr>
<td>11</td>
<td>COMMUNICATION SCIENCE</td>
<td>11</td>
<td>719</td>
</tr>
<tr>
<td>12</td>
<td>POLITICAL SCIENCE</td>
<td>11</td>
<td>262</td>
</tr>
<tr>
<td>13</td>
<td>SOCIOLOGY</td>
<td>13</td>
<td>487</td>
</tr>
<tr>
<td>14</td>
<td>ANTHROPOLOGY</td>
<td>9</td>
<td>173</td>
</tr>
<tr>
<td>15</td>
<td>JURISPRUDENCE</td>
<td>50</td>
<td>1096</td>
</tr>
<tr>
<td>16</td>
<td>MEDICINE</td>
<td>30</td>
<td>278</td>
</tr>
<tr>
<td>17</td>
<td>MANAGEMENT</td>
<td>48</td>
<td>1265</td>
</tr>
<tr>
<td>18</td>
<td>ECONOMIC DEVELOPMENT</td>
<td>11</td>
<td>853</td>
</tr>
<tr>
<td>19</td>
<td>ACCOUNTING</td>
<td>23</td>
<td>1127</td>
</tr>
</tbody>
</table>

Using model (2) we can find the score of efficiency. For example for DMU_1 (Department of Information Technology), the linear programming model can be written as follows.

Maximize 610U_1 + 5U_2

Subject to

\[17V_1 + 588V_2 = 1\]
\[610U_1 + 5U_2 - 17V_1 - 588V_2 \leq 0\]
\[533U_1 + 5U_2 - 26V_1 - 747V_2 \leq 0\]
\[195U_1 + 5U_2 - 15V_1 - 396V_2 \leq 0\]
\[300U_1 + 5U_2 - 17V_1 - 467V_2 \leq 0\]
\[252U_1 + 5U_2 - 25V_1 - 348V_2 \leq 0\]
\[224U_1 + 5U_2 - 23V_1 - 499V_2 \leq 0\]
\[326U_1 + 5U_2 - 19V_1 - 420V_2 \leq 0\]
\[273U_1 + 5U_2 - 17V_1 - 689V_2 \leq 0\]
\[284U_1 + 5U_2 - 34V_1 - 822V_2 \leq 0\]
\[204U_1 + 5U_2 - 10V_1 - 501V_2 \leq 0\]
\[273U_1 + 5U_2 - 11V_1 - 501V_2 \leq 0\]
\[183U_1 + 5U_2 - 11V_1 - 262V_2 \leq 0\]
We use software LINDO Release 6.1 Demo Version. The expression (3) is in LINDO format.

The result is as follows.

OBJECTIVE FUNCTION VALUE

1) **1.000000**

VARIABLE VALUE REDUCED COST

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Reduced Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_1</td>
<td>0.001639</td>
<td>0.000000</td>
</tr>
<tr>
<td>U_2</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
<tr>
<td>V_1</td>
<td>0.058824</td>
<td>0.000000</td>
</tr>
<tr>
<td>V_2</td>
<td>0.000000</td>
<td>0.000000</td>
</tr>
</tbody>
</table>

It can be seen that DMU1 is efficient, as the value of β is 1.0. The score of efficiency for all DMUs can be found in Table 2.

Table 2. Result of efficiencies for each DMU using output-oriented DEA.

<table>
<thead>
<tr>
<th>NO</th>
<th>DMU</th>
<th>DEA Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>INFORMATION TECHNOLOGY</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>CIVIL ENGINEERING</td>
<td>0.6982436</td>
</tr>
<tr>
<td>3</td>
<td>ARCHITECTURAL ENGINEERING</td>
<td>0.6818709</td>
</tr>
<tr>
<td>4</td>
<td>INDUSTRIAL ENGINEERING</td>
<td>0.7045490</td>
</tr>
<tr>
<td>5</td>
<td>CHEMICAL ENGINEERING</td>
<td>0.8069085</td>
</tr>
<tr>
<td>6</td>
<td>MECHANICAL ENGINEERING</td>
<td>0.5265533</td>
</tr>
<tr>
<td>7</td>
<td>ELECTRICAL ENGINEERING</td>
<td>0.8263003</td>
</tr>
<tr>
<td>8</td>
<td>AGRIBUSINESS</td>
<td>0.6639550</td>
</tr>
<tr>
<td>9</td>
<td>AGROTECHNOLOGY</td>
<td>0.3810771</td>
</tr>
<tr>
<td>10</td>
<td>AQUACULTURE</td>
<td>1.0</td>
</tr>
<tr>
<td>11</td>
<td>COMMUNICATION SCIENCE</td>
<td>0.9912544</td>
</tr>
<tr>
<td>12</td>
<td>POLITICAL SCIENCE</td>
<td>0.9152225</td>
</tr>
<tr>
<td>13</td>
<td>SOCIOLOGY</td>
<td>0.7845375</td>
</tr>
<tr>
<td>14</td>
<td>ANTHROPOLOGY</td>
<td>1.0</td>
</tr>
<tr>
<td>15</td>
<td>JURISPRUDENCE</td>
<td>0.4226586</td>
</tr>
<tr>
<td>16</td>
<td>MEDICINE</td>
<td>1.0</td>
</tr>
<tr>
<td>17</td>
<td>MANAGEMENT</td>
<td>0.9921286</td>
</tr>
<tr>
<td>18</td>
<td>ECONOMIC DEVELOPMENT</td>
<td>1.0</td>
</tr>
<tr>
<td>19</td>
<td>ACCOUNTING</td>
<td>0.5871874</td>
</tr>
</tbody>
</table>
From Table 2 we would be able to observe that $\text{DMU}_1, \text{DMU}_{10}, \text{DMU}_{14}, \text{DMU}_{16}, \text{and} \text{DMU}_{18}$ are efficient. However if the output variable the number of research (y_2) is increased significantly then the corresponding DMU would be efficient. For example, DMU_2 is inefficient. If y_2 is increased from 5 to 15 then it would be efficient. DMU_3 is inefficient formerly, if we increase y_2 from 5 to 10, it would be efficient. It should be noted that the number of staff for DMU_2 and DMU_3, respectively, are 26 and 15. In order to control the flexibility of output variables, it is necessarily to add the constraints in model (2) with bounded output.

$$LB_{rj} \leq \sum_{i} y_{rj} \leq UB_{rj}$$

Where LB is lower bound and UB is upper bound for DMU_j.

4. Conclusions

The efficiency assessment of all Department in Malikussaleh University is carried out using CCR output oriented model. The analysis of efficiency can be done by varying the output variables, while the input variables are kept fixed. Nevertheless the output variables should be upper bounded. It is found out that the main important in order to be efficient is to have more number of research. As a matter of fact this finding is synchronized with the urge from Indonesia Government about to have more research scheme.

References