CONTENTS

RESEARCH

Leukocyte Interference on Hemoglobin Examination in Hematology Malignancy
(Pengaruhi Jumlah Leukosit terhadap Kadar Hemoglobin pada Regnan Hematologi)
Trind Sulamit, Ferry H. Soedewo, Arifool Haji
203–207

The Analysis of Calcium Level in Stored Packed Red Cells
(Analisis Kadar Kalium Darah Simpan Packed Red Cells)
Suryani Jami, Rachmawati Muhiddin, Mansyur Anif
208–210

Correlation between Matrix Metalloproteinase 1 Serum Levels and Model of End Stage Liver Disease Score in Patients with Hepatic Cirrhosis
(Kenalan Matrix Metalloproteinase 1 Serum Terhadap Skor Model End Stage Liver Disease di Pasien Sirosis Hati)
Stephanus Yoanito, Siti Muchayat
211–215

Relationship between D-Dimer Level and Clinical Severity of Sepsis
(Hubungan antara Kadar D-dimer dan Tingkat Ketajaman Klinis di Septis)
Yessy Puspitasari, Arysta, Arifool Haji, Rambang Pujo Semadi
216–220

Comparison of Factor VIII Activity in O and Non-O Blood Types
(Perbandingan Aktivitas Faktor VIII Antara Golongan Darah O dan Non-O)
Adilin Dina, Siswanto, Yetti Hermantinisih
221–224

Apo B/Apo A-I Ratio in Patients with Stenosis Coronary Heart Disease Greater or Less than 70%
(Rasio Apo B/Apo A-I di Pasien Penyakit Jantung Koroner dengan Stenosis Lebih Besar Atau Kecil 70%)
Dedi Ani, Yanti, Tuyah Tamba, Harris Hasan
225–229

Analysis of Dengue Specific Immune Response Based on Serotype, Type and Severity of Dengue Infection
(Analisis Respons Imun Spesifik Dengue terhadap Serotipe, Jenis dan Derajat Infeksi Virus Dengue)
Rudi Rochaeri, Arysta Puspita Wardhani, Osman Had
230–233

Neutrophil/Lymphocyte Count Ratio on Dengue Hemorrhagic Fever
(Rasio Neutrofil/Linfosit Pada Demam Berdarah Dengue)
Inayati, Arifin Naurilto, Nurhayamah Sempang
234–239

Neutrophil/Lymphocyte Ratio and High Sensitivity C-Reactive Protein as Ischemic Stroke Outcome Predictor
(Rasio Neutrofil/Linfosit dan High Sensitivity C-Reactive Protein sebagai Peramal Hasil Strok Iskemik Akut)
Tisli Liskawin Putri, Ratna Akbari Ganie, Aldy S. Rabo
240–245

Analysis of Rhesus and Kell Genotype in Patients with Transfusion Reaction
(Analisis Genotipe Rhesus dan Kell Pasien dengan Reaksi Transfusi)
Sulmaawati, Rachmawati Muhiddin, Mansyur Anif
246–250
Diagnostic Value of Fas tucre TB DNA Rapid Test for Diagnosis of Pulmonary Tuberculosis
(Nilai Diagnostik dari Uji Cepat Fas tucre TB DNA untuk Diagnosis Tuberkulosis Paru)
Diyan Wahyu Kurniasari, Juasak Nugraha, Aryati

Neutrophil-Lymphocyte Count Ratio in Bacterial Sepsis
(Rasio Neutrofil-Limfosit Pada Sepsis Bakterial)
Danny Luhulima, Marwito, Eva O

Comparison of Percentage Peripheral Blood Lymphoblast Proliferation and Apoptosis in Pediatric
Acute Lymphoblastic Leukemia Before and After Chemotherapy Induction Phase
(Perbandingan Persentase Proliferasi dan Apoptosis Limfoblast di Darah Periferi di Kasus Leukemia
Limfoblastik Anak Sebelum dan Setelah Kemoterapi Tahap Induksi)
Farida Nur‘Alin, Endang Retnowati, Yetti Hermaningsih, Mia Ratwita A

Analysis of Erythrocyte Indices in Stored Packed Red Cells at The Blood Bank of Dr. Wahidin
Sudirohujo so Hospital
(Analisis Indeks Eritosito Darah Simpan Packed Red Cells di Bank Darah RSUP Dr. Wahidin
Sudirohudo so Makasar)
Hirie Octavia, Rachmawati Muhiddin, Mansyur Arif

Correlation of Urine N-Acetyl-Beta-D-Glucosaminidase Activity with Urine Albumin Creatinine Ratio
in Type 2 Diabetes Mellitus
(Korelasi Aktivitas N-Acetyl-Beta-D-Glucosaminidase pada Air Melositas dengan Air Albumin Creatinine
Rasio di Diabetes Melitus Tip 2)
Melly Ariyuni, Liliha, Elysa Nasruli, Hurni

Agreement of Simplified Fend-Stewart with Figge-Stewart Method in Diagnosing Metabolic Acidosis
in Critically Ill Patients
(Kesepakatan Metode Fend-Stewart dengan Figge-Stewart dalam Mendiagnosis Acidosis Metabolik di Pasien Critically Ill)
Reni Langgoroni, Rismawati Yasvir, Efirda, Desywar

Comparison of Peripheral Blood Activated NK Cell Percentage Before and After Induction Phase
Chemotherapy in Pediatric Acute Lymphoblastic Leukemia
(Perbandingan Persentase NK Teraktivasi Darah Tepi Sebelum dan Setelah Kemoterapi Tahap
Induksi di Kasus Leukemia Limfoblastik Anak)
Syndra Tj, Endang Retnowati, Yetti Hermaningsih, I Dewa Gede Ugrasaona, Soeprapto Ma’at

LITERATURE REVIEW
Quality of Stored Red Blood Cells
(Kualitas Sel Darah Merah Simpan)
Anak Agung Wiradewi Lestari, Teguh Triyono, Usi Sukoroni

CASE REPORT
A Thirty-One-Years-Old Female with SLE and Systemic Sclerosis
(Perempuan Usia 31 Tahun dengan SLE dan Skleroderma Sistemik)
Rahardjo, Rachmawati

Thanks to editors in duty of LJCP & ML Vol 23 No. 3 July 2017
Rismawati Yasvir, Nurhayana Sennang Andi Manggung, Adi Koesoema Aman, Orman sianiper, Purwanto AI Budi Mulyono, Juasak Nugraha, Rahajuringsih Dharma
RESEARCH

NEUTROPHIL-LYMPHOCYTE RATIO AND HIGH SENSITIVITY C-REACTIVE PROTEIN AS ISCHEMIC STROKE OUTCOME PREDICTOR
(Rasio Neutrofil–Linfosit dan High Sensitivity C–Reactive Protein sebagai Peramal Hasil Strok Isekimik Akut)

Tisli Likawuni Putri1, Ratna Akbari Ganoe1, Aldy S. Rambe2

ABSTRAK
Proses inflamasi merupakan perjalanan penyakit dari strok isekimik akut, yang melibatkan penumpukan mediator inflamasi dan infiltrasi leukosit. Nilai Rasio Neutrofil–Linfosit (RNL) di beberapa penelitian dapat digunakan untuk meramalkan stok akibat isekimik akut yang terjadi masih dilakukan. High sensitivity C Reactive Protein (hs-CRP) merupakan reaksi tahap akut yang kadangkala menyumbang pada stok isekimik. Oleh karena itu bermanfaat sebagai parameter peramal hal terkait. Penelitian ini bertujuan untuk mengetahui perbandingan nilai antara RNL dan hs-CRP dalam meramalkan hasil pasien stok isekimik akut. Metode penelitian analisis observasional dengan rancangan kohort prospектив. Hasil dianalisis dengan modified Rankin Scale (mRS) (1–2 = baik; 3–6 = buruk) dan Barthel Index (BI) (0–20 = ketergantungan jumlah keseluruhan, 21-60 = berat; 1–90 = sedang; 91–99 = ringan dan 100 = normal). Dari 43 sampel, didapatkan laki-laki 24 orang (55,8%) dan perempuan 19 orang (44,2%) dengan rata-rata usia 57,1 tahun. Hubungan positif didapatkan sedang dan bernilai antara RNL dengan hasil mRS dan BI pasien stok isekimik akut (r = 0,585; p = 0,001) dan (r = 0,564; p = 0,001). Hubungan positif didapatkan kuat dan bernilai antara hs-CRP dan hasil mRS (r = 0,614; p = 0,001) serta didapatkan hubungan positif dengan kekuatan sangat kuat dan bernilai antara hs-CRP dan hasil BI pasien stok isekimik akut (r = 0,881; p = 0,001). Dengan membandingkan ketercapa KEU dan data didapatkan RNL 86% dan hs-CRP 88% (p = 0,6554). Perbedaan tidak bermakna terdapat antara nilai RNL dan hs-CRP sebagai peramal hasil pasien stok isekimik akut.

Kata kunci: Rasio neutrofil–limfosit, hs-CRP hasil pasien, stok isekimik akut, inflamasi

ABSTRACT
Inflammation process is the pathogeneses of the acute ischemic stroke, which involves the accumulation of inflammatory mediators and leukocyte infiltration. The neutrophil-lymphocyte ratio (NLR) in some studies can be used to predict the outcome of an acute ischemic stroke and is easy to carry out. The high sensitivity C-reactive protein (hs-CRP) is an acute phase reactant which levels increase in existence of ischemic stroke, and therefore is useful as the predictor marker of the disease. The aim of this study is to know the difference value of RNL with hs-CRP in predicting the outcome of patients with acute ischemic stroke by determination. The analysis was carried observationally with cohort prospective design. The outcome was then measured by modified Rankin scale (mRS) (1–2 = good; 3–6 = poor) and Barthel Index (BI) (0–20 = total dependence; 21–60 = severely; 61–90 = moderate; 91–99 = mild and 100 = normal). Of the 43 samples, there were 24 males (55.8%) and 19 females (44.2%) with the mean age about 57.1 ± 5.8 years. There was positive, moderate and significant correlation between RNL with mRS and BI outcome of the acute ischemic stroke patients (r = 0.585; p = 0.001) and (r = 0.564; p = 0.001). There was positive, strong and significant correlation between hs-CRP with mRS outcome (r = 0.614; p = 0.001); and there was positive, very strong and significant correlation between hs-CRP with BI outcome of acute ischemic stroke patients (r = 0.881; p = 0.001). By comparing its accuracy, it was found that RNL is about 86% and 88% and hs-CRP (p = 0.6554). There was no significant difference between the value of RNL with hs-CRP as the outcome predictor of acute ischemic stroke patients.

Key words: Neutrophil-lymphocyte ratio, hs-CRP outcome, acute ischemic stroke, inflammatory

1 Department of Clinical Pathology; Faculty of Medicine, University of Sumatera Utara/Haji Adam Malik Hospital, Medan, Indonesia. E-mail: tisliyputri@gmail.com
2 Department of Neurology, Faculty of Medicine, University of Sumatera Utara/Haji Adam Malik Hospital, Medan, Indonesia

240
INTRODUCTION

The stroke cases in Indonesia tend to elevate in terms of death, incident, or disability. The mortality rate caused by stroke is high, namely 15.9% for the age between 45–55 years, 26.8% for the age between 55–64 years and 33.5% for the age of 65 years. The incidence of stroke is also high, 33.6/100,000. Stroke, moreover, can trigger disability, namely 1.6% for unchanged disability and 4.3% for continuously severe disability. Males are also known to have higher risk of stroke than females. The age profiles of stroke patients are 11.6% for under 45 years, 54.2% for between 45–64 years and 32.3% for above or equal to 65 years. In other words, stroke can attack people at both productive age and old age, which potentially leading to new problems in the national health development in the future.1

Furthermore, many factors have been evaluated for predicting the infant size, prognosis and mortality in acute ischemic stroke, such as acute-phase reactants (C-reactive protein) and blood cell components (neutrophils and lymphocytes). The pathophysiology of acute ischemic stroke is the inflammatory process, involving endothelial activation, blood-brain barrier disorder, inflammatory mediator accumulation and leukocyte and platelet infiltration.2

The accumulation of neutrophils in the brain region begins within six (6) hours of ischemic onset, ending up to six (6) days. In some researches, the degree of infiltration is related to the severity of its neurological injury. It is known that there is a strong correlation between stroke severity and the Lymphocyte Neutrophil Ratio (NLR).3 It is also known that there is a significant positive correlation between NLR and National Institute of Health Stroke Scale (NIHSS) in acute ischemic stroke cases (r=0.64; p=0.001).2

The Neutrophil Lymphocyte Ratio (NLR) score is significantly higher in the dying group than in the acute stroke patients.3

In addition, cerebral ischemia may also trigger the acute response, monitored by a significant increase in high-sensitivity CRP (hs-CRP) in acute ischemic stroke, especially during the first week. High hs-CRP value indicates a strong risk factor for death in acute ischemic stroke.4 High hs-CRP value in stroke (ischemic and hemorrhagic) also indicates an inflammatory response to acute stroke. Besides, the elevated value of hs-CRP can be associated with extensive infarct and bleeding, severe neurological deficits and poor outcomes.5 In other words, the high sensitivity C-Reactive Protein is an acute phase of reactant that increases in stroke (ischemic and hemorrhagic). As a result, hs-CRP may be useful as the predictor and diagnostic markers in stroke.6

Stroke outcomes are functional status using scores/parameters.7 For convenience and outcome measurement uniformity, there are several scoring assessments that have been widely used in the world, including modified Rankin Scale and Barthel Index.8 Follow-up evaluation (outcome review), therefore, is required to perform at the hospital on the first day and on the following day the patient is going home.9

METHODS

This research was an analytic observational research with cohort prospective design. This research was conducted at the Department of Clinical Pathology in collaboration with the Department of Neurology of H. Adam Malik Hospital Medan from December 2015 to March 2016. The number of samples consist of 43 people. The exclusion criteria determined were patients with recurrent ischemic stroke, those with acute coronary syndrome, inflammation and infection, neoplasms and immunosuppressant drug users, those with hematological disorders, as well as impaired hepatic and kidney function. This research has already obtained Ethical Clearance approved by the Research Committee of Medical Division of Medical Faculty in University of Sumatera Utara (FK USU) No. 126/KOMET FK USU/2016. The research was then performed with the following steps:

First, Modified Rankin Scale, known as mRS (1–2=good; 3–6=bad), as well as Barthel Index, called as BI (0–20=total dependence, 21–60=weight; 1–90=moderate; 91–100=mild and 100=normal) of those acute ischemic stroke patients (onset <7 days) were measured by the same person at the time they were admitted to the hospital or on the day as stated in their medical records;

Second, the blood material of the research subjects was taken using a vein puncture needle from the median cubital vein. The vein puncture had to be cleaned first with 70% alcohol and then dried. Next, the blood is placed in vacutainer K2EDTA tube as much as 3 mL by using venoject, while the blood in the vacutainer gel clot activator tube was taken as much as 5 mL. The content of the vacutainer K2EDTA tube was then homogenized slowly eight (8) times. Afterwards, an examination was completed within one hour after the sampling. Next, the blood in the vacutainer gel clot activator tubes was frozen for 20 minutes at room temperature and centrifuged at 3000 rpm for 20 minutes. The serum then was separated and inserted into a 1 mL aliquot;
Third, the measurement of hs-CRP values was performed after it is stored in a freezer at 0°C until a predetermined check time (maximum of 6 months). The measurement of hs-CRP values was simultaneously conducted after a number of the ingredients were collected. An examination was conducted using COBAS C 501 analyzer tool. First of all, the frozen material was melted at room temperature and then homogenized with a vortexer. Next, the control solution was also equated with room temperature (20°–25°C). Finally, the examination was performed with particle-enhanced turbidimetric immunoassay technique. In general, the principle of the examination is that the material is added with the R1 (buffer) reagent and R2 (latex Anti-CRP Antibodies) and then anti-CRP antibody binding to the latex microparticle will react with the antigen in the sample to form the Ag–Ab complex. Agglutination of this Ag–Ab complex is measured turbidimetrically. A hs-CRP value of <1 is considered as low risk, while a hs-CRP value of 1–3 is considered to be moderate and a hs-CRP value of >3 is considered to be high risk of poor outcome.

Fourth, analysis was performed using automatic cell counting Sysmex XT-4000i to obtain NLR value by examining Complete Blood Count (CBC) using flowcytometry method. The ratio of lymphocyte neutrophil was obtained by dividing absolute neutrophil value with absolute lymphocyte value. Neutrophil–lymphocyte ratio with a value of ≤5 can be considered to have low risk, while NLR with a value of >5 can be considered to have high risk.

Fifth, on the 14th day before the patients going home, outcome examination on the entire research subjects was conducted (BI and mRS replication) by the same person; And the last step, the data analysis was performed using SPSS. A correlation test with contingency and gamma coefficients was conducted. The sensitivity, specificity, accuracy values as well as Z value for meaning were also examined. For all the statistical tests were performed, a p value of <0.05 was considered to be significant.

RESULTS AND DISCUSSION

The number of the research subjects in this research was 43 (forty-three) patients who suffer acute stroke, consisted of 24 (twenty-four) males (55.8%) and 19 (nineteen) females (44.2%). The mean age of those research subjects was 57.12±9.8 years old with the age range of 33 to 75 years. The highest number of those research subjects was found in the age group of 47–60 years, about 20 (twenty) patients (46.6%). Meanwhile, the lowest number of those research subjects was found in the age group between 33–46 years, about five people (11.6%).

The correlation of NLR with modified Rankin Scale (mRS) of acute ischemic stroke outcomes was then assessed by performing a correlation test with contingency coefficient. The results of the correlation test indicated a linear correlation with moderate and significant strength (r=0.585; p=0.001) as seen in Table 1.

![Table 1. The correlation of NLR with mRS of acute ischemic stroke outcome](image)

<table>
<thead>
<tr>
<th>NLR values</th>
<th>Total</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>>5 (High risk)</td>
<td>18</td>
<td>3</td>
<td>21</td>
</tr>
<tr>
<td>≤5 (Low risk)</td>
<td>3</td>
<td>19</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>22</td>
<td>43</td>
</tr>
</tbody>
</table>

Contingency Coefficient Test

![Table 2. The correlation of NLR with BI of acute ischemic stroke patients](image)

<table>
<thead>
<tr>
<th>NLR values</th>
<th>Total</th>
<th>Dependency:</th>
<th>Total</th>
<th>r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>>5 (High risk)</td>
<td>9</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>≤5 (Low risk)</td>
<td>1</td>
<td>3</td>
<td>18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>12</td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Contingency Coefficient Test

242 *Indonesian Journal of Clinical Pathology and Medical Laboratory*. 2017 July; 23(3): 240–245
Next, the correlation of NLR with Barthel Index (BI) of acute ischemic stroke outcomes was also assessed by conducting a correlation test with contingency coefficient. Results of the correlation test showed a linear correlation with moderate and significant correlation strength ($r=0.564; p=0.001$) as seen in Table 2.

Afterwards, the correlation of hs-CRP with mRS of acute ischemic stroke outcomes was assessed by performing a correlation test with contingency coefficient. The results of the correlation test indicated the linear correlation with a strong and significant correlation strength ($r=0.614; p=0.001$) as seen in Table 3.

Table 3. The correlation of hs-CRP with mRS of acute ischemic stroke outcome

<table>
<thead>
<tr>
<th>hs-CRP values</th>
<th>Outcome (mRS)</th>
<th>Total</th>
<th>r</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bad</td>
<td>Good</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>3 (High risk)</td>
<td>17</td>
<td>3</td>
<td>20</td>
<td>0.614</td>
</tr>
<tr>
<td>1–3 (Moderate risk)</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td><1 (Low risk)</td>
<td>1</td>
<td>18</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>22</td>
<td>43</td>
<td></td>
</tr>
</tbody>
</table>

Correlation test with contingency coefficient

Similarly, the correlation of hs-CRP with Barthel Index (BI) of acute ischemic stroke outcomes then was assessed by conducting the gamma correlation test. Results of the correlation test which showed a linear correlation with a very strong and significant correlation strength ($r=0.881; p=0.001$) as seen in Table 4.

Next, the differences between NLR and hs-CRP values as predictors of an acute ischemic stroke outcome was assessed by comparing the accuracy, sensitivity and specificity of the two tests and then calculating the Z value to obtain significance. The results revealed that there was no significant difference in the accuracy between NLR and hs-CRP values as predictors of acute ischemic stroke outcome ($p=0.6554$) as seen in Table 5 and Table 6.

Table 4. The correlation of hs-CRP with BI of acute ischemic stroke patients

<table>
<thead>
<tr>
<th>hs-CRP values</th>
<th>Outcome (BI)</th>
<th>Total</th>
<th>Severe</th>
<th>Moderate</th>
<th>Mild</th>
<th>Normal</th>
<th>R</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High risk</td>
<td>9</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Moderate risk</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0.881</td>
</tr>
<tr>
<td>Low risk</td>
<td>0</td>
<td>2</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0.001</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>12</td>
<td>21</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>43</td>
<td></td>
</tr>
</tbody>
</table>

Gamma correlation test

Table 5. The correlation of NLR values with mRS of acute ischemic stroke outcome

<table>
<thead>
<tr>
<th>NLR values</th>
<th>Outcome (mRS)</th>
<th>Total</th>
<th>Bad</th>
<th>Good</th>
</tr>
</thead>
<tbody>
<tr>
<td>High risk</td>
<td>18</td>
<td>3</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Low risk</td>
<td>3</td>
<td>19</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>21</td>
<td>22</td>
<td>43</td>
<td></td>
</tr>
</tbody>
</table>

Table 6. The correlation of hs-CRP values with mRS of acute ischemic stroke outcome

<table>
<thead>
<tr>
<th>hs-CRP values</th>
<th>Outcome (mRS)</th>
<th>Total</th>
<th>Moderate-high risk</th>
<th>Low risk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>18</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>21</td>
<td>22</td>
</tr>
</tbody>
</table>

NLR values used to predict bad outcome were derived from Table 5 as follow:
Accuracy = $a+d/N=18+19/43=37/43=0.86=86\%$;
Sensitivity = $a/a+c=18/18+3=18/21=0.85=85\%$; and
Specificity = $d/b+d=19/3+19=19/22=0.86=86\%$

hs-CRP values used to predict bad outcome buuk were derived from Table 6 as follow:
Accuracy = $a+d/N=20+18/43=38/43=0.88=88\%$;
Sensitivity = $a/a+c=20/20+1=20/21=0.95=95\%$; and
Specificity = $d/b+d=18/4+18=18/22=0.81=81\%$.

Neutrophil Lymphocyte Ratio · Putri, et al. 243
\[Z = \frac{p - \bar{p}}{\sqrt{\frac{p \cdot (1 - p)}{N}}} \]

To assess the differences in accuracy between RNL values (86\%) and hs-CRP values (88\%), it is then necessary to find p value. But, Z value had to be analyzed first:

\(p \text{ value then could be derived from } Z \text{ value } = 0.6554 \) (p<0.05=significant)

Note:

\(Z = \text{ accuracy} \)
\(p = \text{ accuracy of hs-CRP (0.88)} \)
\(\bar{p} = \text{ accuracy of RNL (0.86)} \)
\(Q = 1-P = 1-0.86 = 0.14 \)
\(N = \text{ Number of sample } = 43 \)

The correlation of NLR with mRS of an acute ischemic stroke outcome in this research was in line with the moderate and significant correlation strength \(r=0.585; p=0.001 \). Similarly, the correlation of NLR with Barath Index (BI) of acute ischemic stroke outcome in this research was also in line with the moderate and significant correlation strength \(r=0.584; p=0.001 \). Like the results of the research conducted by Tokgoz et al.\(^3\) in 2013 which examining the NLR values as a predictor of acute ischemic stroke also revealed the liner correlation with strong and significant correlation strength \(r=0.64, p=0.001 \) using the National Institute Health of Stroke Scale (NIHSS).\(^3\) Similarly, the research performed by Gokhan et al.\(^4\) in 2013 assessing NLR on ischemic and acute hemorrhagic strokes as well as on the transient ischemic attack showed that NLR values in the dead group were significantly higher \(p=0.001 \), while NLR values in transient ischemic stroke patients were significantly lower than in the acute hemorrhagic stroke patients \(p=0.001 \). In the research is also found that NLR values in the acute ischemic stroke group were significantly higher than in the ischemic stroke with large arterial artherosclerosis subtype \(p<0.001 \).\(^3\)

The pathogenesis of cerebral infarction, moreover, is an inflammatory process causing liquefaction necrosis.

As a result, there exist of leukocyte migration into the infarction area were also increases. These inflammatory cells then exacerbate the damage by worsening the penumbral area as well as damaging the core area of the infarct. On the other hand, neutrophil migration to the damaged areas is considered as an early response to the brain ischemia. The migration occurs within 6 hours (0) to 24 hours of the ischemic onset. Proteolytic enzymes, such as phosphatase acids and reactive oxygen species, will be released to the infarcted area via neutrophil accumulation in the ischemic area or in the reperfusion ones. Consequently, the number of neutrophils is related to the severity of brain tissue damage and poor neurological outcome.\(^2\)

The lymphocytes also play a role in the inflammatory response. The lymphocytes begin to increase on the first day after the onset of stroke and its peak after seven (7) days. T lymphocytes are also thought to play the role in repairing of inflamed tissues. The improvement which caused by lymphocytes is associated with the release of cytokines and growth factors activating microglia. In addition, the lymphocytes have a negative correlation with the mortality in ischemic stroke.\(^2\) Similarly, the recent researches also reveal that high NLR values also have the same predictive character values on the prognosis, severity and the mortality in artherosclerosis (ischemic stroke).\(^3\)

The correlation of hs-CRP with mRS of the acute ischemic stroke outcomes in this research was in line with a strong and significant correlation strength \(r=0.614; p=0.001 \). Similarly, the correlation of hs-CRP with BI of the acute ischemic stroke outcomes in this research was in line with a very strong and significant correlation strength \(r=0.861; p=0.001 \). Like these study results, the research conducted by Mishra et al.\(^5\) in 2010 showed that hs-CRP values in the stroke group were significantly higher than the control one \(p=0.001 \). The hs-CRP values in the hemorrhagic stroke group were also significantly higher than in the ischemic group \(14.81\pm5.2 \) vs \(10.73\pm5.4 \) with a value of \(p=0.001 \). Thus, it can be concluded that a significant increase in hs-CRP values in stroke suggests an inflammatory response to the acute stroke and then enhancing further of the hs-CRP values which can be associated with the extensive infarct and bleeding, severe neurological deficits and poor outcomes.\(^5\) Similarly, a research conducted by Huang et al.\(^11\) on hs-CRP as a strong risk factor for death in acute ischemic stroke in the Chinese population in 2012 revealed that high Hs-CRP as well as in the same condition of NIHSS on the day of admission (HR 2.35; p=0.005) was considered as an independent risk factor for the mortality (HR 6.48, 0 = 0.002).\(^11\)

Acute stroke can also trigger an inflammatory response, resulting in an increase in CRP. CRP is a glycoprotein produced by the hepatic. CRP is normally absent in the blood. The presence of acute inflammation with tissue damage can stimulate CRP production.\(^12\) An increase in hs-CRP levels occurs
between 12–24 hours after stroke onset. A research shows CRP contributes to secondary brain damage after the onset of the related ischemic, this happened possibly through complement activation, leading to the tissue damage.

Next, the difference between NLR values and hs-CRP values as the predictors of acute ischemic stroke outcome was assessed by comparing: the accuracy, sensitivity and specificity of the two tests and then followed by calculating the Z value to obtain the significance value. The results of the NLR examination in the predicting outcomes of acute ischemic stroke patients found an accuracy of 86%, a sensitivity of 85% and a specificity of 86%. On the other hand, the results of the hs-CRP examination in predicting the outcomes of the acute ischemic stroke patients showed an accuracy of 88%, a sensitivity of 95% and a specificity of 81%. The calculation of Z value indicated that p value was not significant (0.6554). Consequently, it can be concluded that there was no significant difference in the accuracy between NLR and hs-CRP values as the predictors of an acute ischemic stroke outcomes.

A previous research performed by Kim et al. in 2010 on NLR in predicting short-term functional outcomes of an acute ischemic stroke patients showed a sensitivity of 86.4% and a specificity of 53.3%. Another previous research conducted by Ghabaei et al. in 2013 on the use of hs-CRP in predicting the mortality and poor outcomes at an acute ischemic stroke found a sensitivity of 81% and a specificity of 80%. Similarly, a previous research conducted by Shobe et al. in 2014 on the use of hs-CRP in predicting poor outcomes (with mRS assessment) found a sensitivity of 75% and a specificity of 62%. Unfortunately, there still have not been any researches comparing the accuracy of NLR and hs-CRP values in predicting outcomes of acute ischemic stroke patients.

CONCLUSION AND SUGGESTION

In conclusion, based on this research there is no significant difference between NLR and hs-CRP values as an acute ischemic stroke outcome predictors (p=0.655). Consequently, the clinicians working in the areas where there is no hs-CRP examination facility may use NLR score to predict the outcomes of the acute ischemic stroke patients. Neutrophil lymphocyte ratio scores can be obtained from a complete blood examination that can be conducted in almost of all laboratory facilities with affordable cost.

REFERENCES