Results of plagiarism analysis from 2017-12-27 23:45 UTC

Date: 2017-12-27 15:20 UTC

- All sources: 42
- Internet sources: 33
- Own documents: 5
- Organization archive: 4

1. informatika.stei.itb.ac.id/~rinaldi.munir/Penelitian/Makalah-ICCAI-2016(2).pdf
 - 2.7% 10 matches

 - 1.7% 7 matches

3. "16. IOP.pdf" dated 2017-12-07
 - 1.9% 6 matches
 - 1 documents with identical matches

4. "17. IOP.pdf" dated 2017-12-07
 - 1.8% 6 matches
 - 1 documents with identical matches

5. eararchive.tpu.ru/bitstream/11683/38509/1/dx.doi.org-10.1088-1757-899X-189-1-012022.pdf
 - 1.4% 4 matches

6. "Text artikel no_11.pdf" dated 2017-12-06
 - 1.5% 4 matches
 - 1 documents with identical matches

 - 1.2% 4 matches

8. iopscience.iop.org/article/10.1088/1742-6596/801/1/011001/meta
 - 1.1% 4 matches
 - 1 documents with identical matches

9. "31. IOP.pdf" dated 2017-12-07
 - 0.9% 2 matches
 - 5 documents with identical matches

 - 0.8% 3 matches

11. toc.proceedings.com/34010webtoc.pdf
 - 0.9% 3 matches

 - 0.7% 2 matches

 - 0.6% 3 matches

 - 0.6% 3 matches

15. "CR-INT137-Enhancing to method for ...ot; dated 2017-10-09
 - 0.5% 2 matches
 - 1 documents with identical matches

16. researchplusjournals.com/index.php/LURS
 - 0.5% 1 matches
 - 1 documents with identical matches

17. ir.unimas.my/16466/1/Air flow optimi... (abstrak).pdf
 - 0.5% 2 matches

18. iopscience.iop.org/article/10.1088/1742-6596/824/1/012022/pdf
 - 0.4% 2 matches

 - 0.4% 2 matches

 - 0.4% 1 matches

21. toc.proceedings.com/34377webtoc.pdf
 - 0.4% 1 matches

22. iaesonline.com/eecsi/2016/wp-content/upl...DULE-Patra-Hotel.pdf
 - 0.4% 1 matches

23. https://www.researchgate.net/publication...An_Exploratory_Study
Studies on behaviour of information to extract the meaning behind the behaviour

To cite this article: M K M Nasution et al 2017 J. Phys.: Conf. Ser. 801 012022

View the article online for updates and enhancements.
Studies on behaviour of information to extract the meaning behind the behaviour

MOVIMONasutionYSylvioElveget
1-2Information Technology, Fasilkom-IT University of Sumatera Utara, Padang, Indonesia.
*Email: mahuuddin@usd.ac.id

Abstract. Web-based social media can be used as a reference for determining social behaviour. However, the information extraction process involved with search engines is not easy to give that picture. Therefore, several properties of the search engine to be formally disclosed to provide assurance that the information is feasible. Although certain types of research that have been revealed the interest of the Web-based social media, the question of how they have revealed the behaviour of information related to social behaviour does not cease, it needs to determine the relationship of the particular properties. There are 12 properties that are interconnected with behaviour of information and then it reveals several meanings based on the simulation results of any search engine.

1. Introduction
As for making the decision, many people need to sequence of processes of order: data, information, knowledge, and wisdom [1]. That way, the systems of the world have been organized [2]. Thus, we need to make decisions that will not determine the present and then determine the future, and at the same time the Web-based social media will provide it [4]. Therefore, the research relating to the social search engines [5,6], data mining [7,8], and semantic technology [9] have been done by researchers [10], but the little of them that explains the behaviour of search engine results in the properties of P2P to explain the social behaviour. This paper will reveal the meaning consistently to both the behaviour so that it can be used as a material consideration in decision making.

2. Basic Concept and Motivation
In the world increasingly smarter, the world is divided into several parts, each part becomes more complex, the other part is simpler and it is not uncommon to get that simpler must go through that more complex, but there are also other parts exist in among them and usually these parts, behave in the interface between that simple and more complex [11,12,13]. As the concept and definition in the system is mathematically to create the demarcation of complexity. A definition of word [14], for example, is as simplification to understand the part of the world as follows.

Definition 1 [15]: A word is a basic unit of discrete data and an item from a vocabulary, indexed by

\[i = 1, 2, \ldots \] such that \(w \in \{ a, r \} \) \(\ldots \). Otherwise, \(W \) is a set of words, \(W \subseteq \{ 1, 2, r, n \} \). And the size of \(W \) is \(| W | = n \).
Each object as a entity not only has a name in word, but the object has one or more attributes (at). The name and attributes can be given literally or the literal content of the knowledge technology. Use the tangible or intangible knowledge [16]. The names and attributes of the entity refer to the social meaning of the objects. A system, the World Wide Web (WWW), is a space of information not only contains text (words), but also consist of pictures (fig.), voice (vo.), video (vi.) or animation (an.), but are all them represented by the words. At least the file name of them [17]. Every Web as a part of the world is increasing more complex forever since found, because their tags continue to developed and enriched. Web allows each person to obtain information and sometimes something. In this case, the tags on the web pages or the metadata refer to the identity of attributes (md) that create more smart documents in Internet, like: .html, .xml, etc. The information system, we define as a space as the part of world as below [5].

Definition 1. A dynamic space, we call it use Web and denote it as \(\Omega \) is a collection of web pages \(\omega = \{\omega_1, \omega_2, \ldots, \omega_n\} \). The page \(\omega \) has a set of attributes \(\text{md} = \{\text{md}_1, \text{md}_2, \ldots, \text{md}_n\} \), and \(\text{md}_i \) is a set of tokens (vocabulary) of \(\omega \).

Definition 2. A term or page \((\omega, \text{md}) \) contains one word or more \(\{\omega_1, \omega_2, \ldots, \omega_n\} \) the page \(\omega \) in pattern, where \(\theta \) is number of tokens (vocabulary) and \(\rho \) is number of parameters representing word \(\omega \).

Definition 3. A list of web pages indexed by search engine is a set contains the ordered pair of the terms and the web pages \(\Omega \). A list contains the ordered pairs of \(\omega \) to the relation table that consists of two columns and \(\text{md} \), where \(\theta = 1, \ldots, \rho \).

Given a set \(\Omega \) the cardinality of \(\Omega \), we call it as a hit count, and we can write \(\Omega \) as \(\{m_{\text{hit}} \} \). The number of hits against \(\Omega \) probability \(p \) is a uniformly mass probability function \(p \), \(\Omega \) is \(\{0, 1\} \), then the properties of the search engine: web based on \(\text{md} \) or \(\omega \).

An Approach

Developing the concept abstraction in mathematics, we use to model the parts of system. A conceptual bridge for building the interface between two different systems in complexity. We declare first a query contains search terms as the bridge of understanding as follows [15].

Definition 4. Let search terms \(\text{ts} \) as vectors of web pages based on the search engine \(\text{sea} \) of \(\Omega \) in which \(\text{ts} \) occurs \(\epsilon \) is the query \(\text{ts} \). For \(\epsilon = \text{ts} \) is a structure.

Second, for formalizing property \(\epsilon \) we define the singleton and then the doubleton in the modelling and the properties.

3.1 Model

Definition 5. \([5, 15]\) A set of search term, \(\text{ts} \), is a set of singleton search term for any search engine \(\text{sea} \) as vector \(\text{ts} \) is a subset of \(\Omega \) is a singleton search engine \(\text{ts} \) in \(\Omega \).

To express the activities of the social member from Web, we can use query system \(\text{M} \) input \(\text{K} \) and whatever social members with different interests, \(\text{M} \) Nasution for example, and then we have the hit count as the representation of all activities. Something
socially can be ascertained with regard to uncertainty: a name may refer to different persons even
person possesses the literal text of different names.

Suppose searches are search terms whereas based on definitions we obtain as follows.

(i) For each empty set and for all non-empty sets we get some note unless there are only
notes. For all non-empty sets we find that there is no and there is no even to note
into, such that

\[t_i \in \Omega \lor t_i \notin \Omega \lor t_i \in \varnothing \lor t_i \notin \varnothing \lor t_i \in \Omega \lor t_i \notin \Omega \lor t_i \in \varnothing \lor t_i \notin \varnothing \]

(1)

and

\[\omega \in \Omega \lor \omega \notin \Omega \lor \omega \in \varnothing \lor \omega \notin \varnothing \lor \omega \in \Omega \lor \omega \notin \Omega \lor \omega \in \varnothing \lor \omega \notin \varnothing \]

(2)

(ii) For each empty set and for all non-empty sets we find that there is no and for all non-empty
sets we get also so s one and for all non-empty
sets we get also so s one and there is no and for all non-empty

\[t_i \in \Omega \lor t_i \notin \Omega \lor t_i \in \varnothing \lor t_i \notin \varnothing \lor t_i \in \Omega \lor t_i \notin \Omega \lor t_i \in \varnothing \lor t_i \notin \varnothing \]

(3)

and

\[\omega \in \Omega \lor \omega \notin \Omega \lor \omega \in \varnothing \lor \omega \notin \varnothing \lor \omega \in \Omega \lor \omega \notin \Omega \lor \omega \in \varnothing \lor \omega \notin \varnothing \]

(4)

(iii) For each empty set and for all non-empty sets we find that there is no and for all non-empty
sets we get also so s one and for all non-empty

\[t_i \in \Omega \lor t_i \notin \Omega \lor t_i \in \varnothing \lor t_i \notin \varnothing \lor t_i \in \Omega \lor t_i \notin \Omega \lor t_i \in \varnothing \lor t_i \notin \varnothing \]

(5)

where\(t_i \in \varnothing \).\(\omega \in \varnothing \)\(\Omega \),\(\Omega \)\(\Omega \),\(\Omega \)\(\Omega \)

Although ambiguity and bias naturally become the gift of social into social media such as the Web,
the social medias itself reflects social behavior of that information about persons not only
independent but also have a relationship with each other. For example, the query contains how
the pattern name manner of Maldives in K. F. E. Nasution’(in quotes), the hits counter will be obtained
which contains no bias, but still have an ambiguous. If the bias has already reduced, then at the moment
also did not lose the social nature of the Web. Thus, we formulate a property of singleton for reducing
ambiguity.

Definition Let\(\Omega \)\(\Omega \)

3.2. Properties

Each activity carried out at different times and places and by different people, so the social behavior
of the independence of the activity is not the same with each other. In other words, for the different
search terms and the different query, based on our theory clear that if then we obtain the
behavior of the disjoint singleton is first property (P) as follows.

\[r \cap \Omega \subseteq \Omega \lor \Omega \subseteq \varnothing \lor \varnothing \subseteq \Omega \]

(1)

However, socially an activity may be carried out by more than two people, even though their roles may
differ or second property (P) is as follows.

\[r \cap \Omega \subseteq \Omega \lor \Omega \subseteq \varnothing \lor \varnothing \subseteq \Omega \]

(2)

This behavior also supported by (P1), (5) and (6), and we have the following.

Lemma Let\(\Omega \)\(\Omega \)\(\Omega \)\(\Omega \)\(\Omega \)\(\Omega \)

In other case, although an activity can stand alone, but in social the behavior of the activity does
not just apply to personal, but involves another person, causing the inclusion of other. Or, based on Eq. (1)
and Eq. (2) we have\(\varnothing \) and\(\Omega \)\(\varnothing \)\(\Omega \)\(\varnothing \)\(\Omega \)\(\varnothing \)\(\Omega \)\(\varnothing \)\(\Omega \)\(\varnothing \). Or, based on Eq. (2) and Eq. (5) we obtain the behavior of inclusion as a property (P3) as follows.

\[r \cap \varnothing \subseteq \Omega \lor \varnothing \subseteq r \cup \Omega \]

(3)

For all, we can prove the Lemma as follows.
Lemma 3.1: Let \mathcal{L} be a set of subsets of Ω. If \mathcal{L} is closed under the operations of union, intersection, and complementation, then \mathcal{L} is a collection of subsets of Ω.

Lemma 3.2: Let \mathcal{L} be a set of subsets of Ω. If \mathcal{L} is closed under the operations of union, intersection, and complementation, then \mathcal{L} is a collection of subsets of Ω.

Lemma 3.3: Let \mathcal{L} be a set of subsets of Ω. If \mathcal{L} is closed under the operations of union, intersection, and complementation, then \mathcal{L} is a collection of subsets of Ω.

Lemma 3.4: Let \mathcal{L} be a set of subsets of Ω. If \mathcal{L} is closed under the operations of union, intersection, and complementation, then \mathcal{L} is a collection of subsets of Ω.

Lemma 3.5: Let \mathcal{L} be a set of subsets of Ω. If \mathcal{L} is closed under the operations of union, intersection, and complementation, then \mathcal{L} is a collection of subsets of Ω.

We conclude the Lemmas as follows.

Lemma 4.1: Let \mathcal{L} be a set of subsets of Ω. If \mathcal{L} is closed under the operations of union, intersection, and complementation, then \mathcal{L} is a collection of subsets of Ω.

Lemma 4.2: Let \mathcal{L} be a set of subsets of Ω. If \mathcal{L} is closed under the operations of union, intersection, and complementation, then \mathcal{L} is a collection of subsets of Ω.

Lemma 4.3: Let \mathcal{L} be a set of subsets of Ω. If \mathcal{L} is closed under the operations of union, intersection, and complementation, then \mathcal{L} is a collection of subsets of Ω.

Lemma 4.4: Let \mathcal{L} be a set of subsets of Ω. If \mathcal{L} is closed under the operations of union, intersection, and complementation, then \mathcal{L} is a collection of subsets of Ω.

Lemma 4.5: Let \mathcal{L} be a set of subsets of Ω. If \mathcal{L} is closed under the operations of union, intersection, and complementation, then \mathcal{L} is a collection of subsets of Ω.

Expansions of Ω into the behaviors of the singletons and the union of the behaviors of the singletons shows the behavior of the inclusion of the singletons in the same activities. We derive \mathcal{L} for the Lemma 4.6. Similarly, we derive \mathcal{L} for the Lemma 4.7. Similarly, we derive \mathcal{L} for the Lemma 4.8.

Proposition 1.1: Let \mathcal{L} be a set of subsets of Ω. If \mathcal{L} is closed under the operations of union, intersection, and complementation, then \mathcal{L} is a collection of subsets of Ω.

Proposition 1.2: Let \mathcal{L} be a set of subsets of Ω. If \mathcal{L} is closed under the operations of union, intersection, and complementation, then \mathcal{L} is a collection of subsets of Ω.

Figure 1. Timeline of Hit Counts (t1 or t2).

Figure 2. Timeline of Hit Counts (t2 or t3).

Figure 3. Comparison between singleton and doubleton.
4. Discussion

Based on the concepts, we have disclose some of the properties of the subspaces which are built into the more complex systems to disclose any information on the reverses [5,6,18,15]. In other words, the systems that contain information such as the Web, we have been lowered or several properties of the above mentioned singleton and doubleton properties we reveal characteristics for expressing their meaning.

Informations contained by the properties depend on the growth of the documents or web pages on the Web, where any search term exists or not. Growth of documents or web pages can be measured by using a search engine for submitting a query that contains term "Mahyuddin K. M. Nasution" by some of the times regularly in various forms on the following urls "Mahyuddin K. M. Nasution" (as a singleton), "Mahyuddin K. M. Nasution" (as a singleton), "Mahyuddin K. M. Nasution," "Universitas Sumatera Utara" (as a doubleton) in this discussion, we have used the Google search engine to count the information on singleton and doubleton properties that have been derived. As a snapshot about the dynamic of Web can be seen in Figure 1 and Figure 2. We already collect numbers of 85 hit counts for representing each the singleton and doubleton per day, 10th and 20th. Although the search results of and have showed instability by the presence of fluctuation on the timeline of the hit counts on a single day. Matching to the same term, however, the singleton also have showed downward trends significantly in some hit counts. On his decline due to the reduction of the number of terms that are not available on the presence of the documents that contain the words that only partially match the search term(s) expressed by some properties. Instead, the doubleton did not increase insignificantly in the series of the hit counts. Still, it has showed that the increasing numbers of documents relating to "Mahyuddin K. M. Nasution," which is affiliated to the "Universitas Sumatera Utara" as a keyword has also increased. On the other hand, on matching based on patterns (that the search term is quote), the singleton of and the doubleton of are always same even though increasing.

Likewise, the comparison between and already exhibit the same characteristic with each other and . While comparison between and also have showed the same thing with the characteristics on the Table 1, see Figure 3, and therefore we can say that

\[cl = \frac{\sum_{i=1}^{n} t_{i}}{n} \]

is the representation of a keyword and .

| Table 1: Four items of hit counts for 94th names |
|------------------|------------------|------------------|------------------|
| Results | \(x_{10} \) | \(x_{20} \) | \(x_{30} \) |
| Total | 59,207,520[®] | 1,338,656[®] | 193,656[®] | 16,549[®] |
| \(x_{10} \) | 1,095,667,218,274,400[®] | 203,058,300,676[®] | 115,535,788,845[®] | 12,718,265[®] |
| \(x_{20} \) | 11,252,918,525,718[®] | 1,957,388,639[®] | 118,471,902[®] | 104,306[®] |

Furthermore, we explore characteristics of singleton and doubleton by measuring the internal consistency (reliability). This characteristic based on Cronbach’s coefficient \(\phi(k-1)/(k \phi(k) \phi \geq 0.9) \). We use the instrument reliability to coefficient for \(k \) number of the questions/items or the amount of matter, \(\omega \) while the sum of squares is \(\sum_{i=1}^{n} t_{i}^{2} \), average \(\bar{t} = \frac{\sum_{i=1}^{n} t_{i}}{n} \), variance \(\sigma^{2} = \frac{\sum_{i=1}^{n} (t_{i} - \bar{t})^{2} \cdot n}{(n-1)} \) and total of items variance \(\sum_{i=1}^{n} t_{i}^{2} \) to \(\bar{t} \). The internal consistency is very good, \(\phi \geq 0.9 \). The internal consistency is good, \(0.7 < \phi \leq 0.9 \). The internal consistency is acceptable, \(0.4 < \phi \leq 0.7 \). The internal consistency is poor, \(0.4 < \phi \leq 0.7 \).

In this discussion, we have used the hit counts for four items. For example, for the names "Uriah Harapah" and on the keywords "Universitas Sumatera Utara" by using the Google search engine to see the query forms and searches. We have obtained these 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where the collection of the hits are 68 and 16,400 and 270 respectively where
For extracting the meaning behind behavior, we calculate the ratio of the white counts based on Equation (P6) for getting $p(x_i|z)$ — closeness in the activities with this/her affiliation, z. z is closeness of scientific work with their affiliation, and z is percentage of scientific work toward other activities based on assumption that Google Scholar is part of Google search engine. The result of calculation in Table 2, we have obtained $\beta = 0.008$.

<table>
<thead>
<tr>
<th></th>
<th>γ</th>
<th>α</th>
<th>β</th>
<th>$\alpha + \beta$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>190.314</td>
<td>62.754</td>
<td>2.979</td>
<td>225.044</td>
</tr>
<tr>
<td>a_{γ}</td>
<td>14.692.35</td>
<td>0.519</td>
<td>0.036</td>
<td>0.555</td>
</tr>
<tr>
<td>a_{α}</td>
<td>152.203</td>
<td>0.005</td>
<td>0.040</td>
<td>0.045</td>
</tr>
</tbody>
</table>

Computations 1 (Table 1) and Computations 2 (Table 2 (Results (a))) have showed that the internal consistency of the information is most accepted, reduce to non-fulfillment of the characteristics of properties through the white counts. For example: name only consists of one word and be part of another name. In another meaning, we have Computations 3 (Table 2 (Results (b))) with reducing the number of names based on the absence of scientific paper in the Scopus index so that remaining $\alpha = 330$ names only use authors, and based on Table 2 (b) we have obtained $\beta = 0.63$: the internal consistency of information is acceptable. We can say that when white counts that represent the names from the parts of system be the interrelated things, then the comparison result into accordance with properties whereby semantically properties are the mutual-support meaning, namely the documents have index id strongly supported by the activities of writing scientific papers, moreover they have the affiliation when published, while the activities only increases traffic information relating to the names associated.

5. Conclusion

We already generate six properties of the data down by the search engine model based on concepts of word, terms, and documents web pages. The properties with their characteristics of the behavior of information. We can be concluded that possibility of internal consistency accepted or not depend on one behavior of names. There are relations between the activities of writing scientific paper and the behavior of information. Furthermore, we will be studying the possibilities of data mining involving the academics/researchers.

References

