HUBUNGAN FAKTOR-FAKTOR HEAT STRESS DENGAN TERJADINYA KRISTALISASI URIN PADA PEKERJA BINATU DAN DAPUR HOTEL X, MEDAN

TESIS

OLEH:

FIRY TRIYANTI

057010010 / KK

SEKOLAH PASCA SARJANA
UNIVERSITAS SUMATERA UTARA
MEDAN
2007
HUBUNGAN FAKTOR-FAKTOR HEAT STRESS DENGAN TERJADINYA KRISTALISASI URIN PADA PEKERJA BINATU DAN DAPUR HOTEL X, MEDAN

TESIS

Untuk Memperoleh Gelar Magister Kesehatan Pada Program Magister Ilmu Kesehatan Masyarakat Kekhususan Program Studi Kesehatan Kerja Sekolah Pascasarjana Universitas Sumatera Utara

OLEH:

FIRY TRIYANTI
057010010 / KK

SEKOLAH PASCASARJANA UNIVERSITAS SUMATERA UTARA
MEDAN
2007
PANITIA PENGUJI TESIS

Ketua : Prof. Dr. Sutomo Kasiman, Sp.PD, Sp.JP

Anggota : Dr. Ir. Erna Mutiara, M.Kes

 Dr. Halinda Sari Lubis, MKKK

 Dr. Drs. R. Kintoko Rochadi, MKM

 Ir. Kalsum, M.Kes
PERNYATAAN

HUBUNGAN FAKTOR-FAKTOR HEAT STRESS DENGAN TERJADINYA KRISTALISASI URIN PADA PEKERJA BINATU DAN DAPUR HOTEL X, MEDAN

TESIS

Dengan ini saya menyatakan bahwa dalam Tesis ini tidak terdapat karya yang pernah diajukan untuk memperoleh gelar kesarjanaan di suatu Perguruan Tinggi dan sepanjang sepengetahuan saya juga tidak terdapat karya atau pendapat yang pernah di tulis atau diterbitkan oleh orang lain, kecuali secara tertulis diacu dalam naskah ini dan disebutkan dalam daftar pustaka.

Medan, Agustus 2007

FIRY TRIYANTI
ABSTRACT

High temperature in the Laundry and Kitchen of Hotel X, Medan, in an average of $29.5^\circ - 30.08^\circ$ C, not only create an uncomfortable working condition but also influence the balance of the worker’s body fluid and electrolyte. This condition can reduce the amount of urine production and the increase of urine mass (hyper-saturated urine) if it is not balance with an adequate supply of fluid and electrolyte. When this condition lasts long, it leads to the forming of urine crystallization which is the risk factor of the incident of stone in the urinary tract.

This cross-sectional study is aimed at analyzing the factors of heat stress and its relationship to the incident of urine crystallization among the workers. The population for this study is all workers working in the Laundry and Kitchen of Hotel X, Medan who met the inclusive criteria. The data needed were obtained through interviews with questionnaire as well as laboratory examination.

The result of this study shows that 29.3% of the workers experience the urine crystallization in terms of calcium oxalate, uric acid, and amorf phosphate. Statistically, there is a significant relationship between the variable of drinking habit and the incident of urine crystallization. It is expected that the management of Hotel X more increase the application of occupational health program in the form of the provision of drinking water accessible to the workers and encourage them to consume water frequently during working hours.

Key words: Heat Stress, Urine Crystallization.
ABSTRAK

Suhu yang tinggi di lingkungan kerja unit Binatu dan Dapur Hotel X, Medan rata-rata sebesar ISBB 29,5\degree C – 30,08\degree C, hal ini selain mengganggu kenyamanan, juga mempengaruhi keseimbangan cairan dan elektrolit tubuh pekerja. Kondisi yang tidak menguntungkan ini jika tidak diimbangi dengan asupan cairan dan elektrolit yang cukup lama kelamaan akan menurunkan jumlah produksi urin, sehingga kepekatan urin akan meningkat (hipersaturasi urin). Keadaan ini bila berlangsung cukup lama dapat mendorong terbentuknya kristalisasi urin yang merupakan faktor risiko terjadinya batu di saluran kemih.

Hasil penelitian menunjukkan sebanyak 29,3% pekerja mengalami kristalisasi urin, dengan jenis kalsium oksalat, asam urat, dan amorf phospat. Secara statistik terdapat hubungan yang signifikan antara variabel kebiasaan minum dengan terjadinya kristalisasi urin. Sehingga intervensi yang diharapkan kepada pihak manajemen hotel X agar lebih meningkatkan lagi penerapan program kesehatan kerja berupa penyediaan air minum yang mudah dijangkau oleh pekerja dan pengawasan terhadap kedisiplinan pekerja dalam mengkonsumsi air minum pada waktu bekerja.

RIWAYAT HIDUP

Nama : Firy Triyanti

Tempat/Tgl Lahir : Petumbukan - Deli Serdang / 1 May 1965

Agama : Islam

Riwayat Pendidikan :

1972 – 1978 : SD Harapan, Medan
1978 – 1981 : SMP Harapan, Medan
1981 – 1984 : SMA Harapan, Medan
1984 – 1985 : Ashland High School, Ashland - WI, USA

Riwayat Pekerjaan :

1995 – 1997 : Staff Dinas Kesehatan Kota Medan
1997 – 2003 : Kasie SIK – Bagian Tata Usaha Dinas Kesehatan Kota Medan
KATA PENGANTAR

Alhamdulillah, segala puji dan syukur ke hadirat Allah SWT yang telah melimpahkan rahmat dan karunia Nya, sehingga tesis yang berjudul "Hubungan Faktor-Faktor Heat Stress dengan Terjadinya Kristalisasi Urin pada Pekerja Binatu dan Dapur Hotel X, Medan" dapat terselesaikan. Shalawat beriring salam kita sanjungkan ke pangkuan Nabi Besar Muhammad SAW.

Disadari sepenuhnya bahwa dalam penulisan tesis ini masih jauh dari kesempurnaan karena keterbatasan ilmu dan pengalaman, oleh karena itu dengan segala kerendahan hati sangat diharapkan kritik dan saran dari berbagai pihak demi kesempurnaan tesis ini.

FIRY TRIYANTI
DAFTAR ISI

ABSTRACT .. i
ABSTRAK .. ii
RIWAYAT HIDUP .. iii
KATA PENGANTAR .. iv
DAFTAR ISI .. v
DAFTAR TABEL .. vii
DAFTAR GAMBAR ... ix
DAFTAR LAMPIRAN ... x

BAB 1. PENDAHULUAN

1.1 Latar Belakang ... 1
1.2 Perumusan Masalah .. 5
1.3 Landasan Teori .. 6
1.4 Tujuan Penelitian .. 8
1.5 Hipotesis ... 9
1.6 Manfaat Penelitian .. 9

BAB 2. TINJAUAN PUSTAKA

2.1 Tekanan Panas (Heat Stress) ... 10
2.2 Pengukuran Heat Stress .. 19
2.3 Mekanisme Fisiologis Pengaruh Paparan Panas 21
2.4 Urin ... 25
2.5 Kristalisasi Urin ... 26

BAB 3. METODE PENELITIAN

3.1 Tempat dan Waktu .. 32
3.2 Populasi dan Sampel ... 33
3.3 Rancangan Penelitian ... 33
3.4 Metode dan Alat Pengumpulan Data ... 34
3.5 Jalannya Penelitian .. 34
3.6 Analisis Data ... 35
3.7 Variabel Penelitian ... 36
3.8 Kerangka Konsep .. 36
3.9 Defenisi Operasional .. 36
3.10 Jadwal Pelaksanaan ... 39

BAB 4. HASIL PENELITIAN

4.1 Hasil .. 40
4.1.1 Gambaran Umum Lokasi Penelitian ... 40
4.1.2 Analisis Univariat .. 40
BAB 5. KESIMPULAN DAN SARAN

5.1 Kesimpulan... 56
5.2 Saran... 56

DAFTAR PUSTAKA... 58
DAFTAR TABEL

<table>
<thead>
<tr>
<th>Tabel</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Nilai Ambang Batas (NAB) iklim kerja</td>
<td>20</td>
</tr>
<tr>
<td>2.2 Keadaan Biokimia yang mengarah kepada Batu Saluran Kemih</td>
<td>27</td>
</tr>
<tr>
<td>2.3 Komposisi Batu Saluran Kemih yang dapat terjadi</td>
<td>28</td>
</tr>
<tr>
<td>2.4 Jenis Kristal yang sering dijumpai pada urin berdasarkan pH urin</td>
<td>30</td>
</tr>
<tr>
<td>3.1 Jadwal Pelaksanaan</td>
<td>39</td>
</tr>
<tr>
<td>4.1 Distribusi Frekuensi Lokasi Tempat Kerja Responden yang bekerja pada Hotel X, di Medan</td>
<td>41</td>
</tr>
<tr>
<td>4.2 Distribusi Frekuensi Masa Kerja Responden yang bekerja pada Binatu dan Dapur Hotel X, di Medan</td>
<td>41</td>
</tr>
<tr>
<td>4.3 Distribusi Frekuensi Lama Terpapar Responden yang bekerja pada Binatu dan Dapur Hotel X, di Medan</td>
<td>42</td>
</tr>
<tr>
<td>4.4 Distribusi Frekuensi Umur Responden yang bekerja pada Hotel X, di Medan</td>
<td>42</td>
</tr>
<tr>
<td>4.5 Distribusi Frekuensi Jenis Kelamin Responden yang bekerja pada Hotel X, di Medan</td>
<td>43</td>
</tr>
<tr>
<td>4.6 Distribusi Frekuensi Pendidikan Responden yang bekerja pada Hotel X, di Medan</td>
<td>43</td>
</tr>
<tr>
<td>4.7 Distribusi Frekuensi Ukuran Tubuh Responden yang bekerja pada Hotel X, di Medan</td>
<td>44</td>
</tr>
<tr>
<td>4.8 Distribusi Frekuensi Volume Minum Responden yang bekerja pada Hotel X, di Medan</td>
<td>44</td>
</tr>
<tr>
<td>4.9 Distribusi Frekuensi Kristalisasi Urin Responden yang bekerja pada Hotel X, di Medan</td>
<td>45</td>
</tr>
<tr>
<td>4.10 Hubungan Masa Kerja dengan terjadinya Kristalisasi Urin Responden Hotel X, di Medan</td>
<td>46</td>
</tr>
</tbody>
</table>
4.11 Hubungan Lama Terpapar dengan terjadinya Kristalisasi Urin Responden Hotel X, di Medan

4.12 Hubungan Jenis Pekerjaan Responden dengan terjadinya Kristalisasi Urin Hotel X, di Medan

4.13 Hubungan Umur dengan terjadinya Kristalisasi Urin Responden Hotel X, di Medan

4.14 Hubungan Ukuran Tubuh dengan terjadinya Kristalisasi Urin Responden Hotel X, di Medan

4.15 Hubungan Kebiasaan Minum dengan terjadinya Kristalisasi Urin Responden Hotel X, di Medan
DAFTAR GAMBAR

<table>
<thead>
<tr>
<th>Gambar</th>
<th>Judul</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Variabel yang berkontribusi terhadap heat stress</td>
<td>11</td>
</tr>
<tr>
<td>2.2</td>
<td>Pengaruh dari tekanan panas dan kelainan-kelainan akibat Panas</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Kerangka Konsep Penelitian</td>
<td>36</td>
</tr>
</tbody>
</table>
DAFTAR LAMPIRAN

Lampiran:

1. Kuesioner Penelitian
2. Output Data Faktor Heat Stress.
3. Output Crosstabs Chi-Square Test.
5. Hasil Pemeriksaan Aklimatisasi.
6. Hasil Pengukuruan ISBB
BAB 1
PENDAHULUAN

1.1. Latar Belakang

Kebanyakan manusia merasa nyaman bekerja pada temperatur udara sekitar 20°C dan 27°C dan dalam situasi humiditas berkisar 35% sampai 60%. Apabila temperatur dan humiditas lebih tinggi, orang akan merasa tidak nyaman. Situasi ini tidak menimbulkan kerugian selama tubuh dapat beradaptasi dengan panas yang terjadi. Lingkungan yang sangat panas dapat mengganggu mekanisme penyesuaian tubuh dan berlanjut kepada kondisi serius dan bahkan fatal. (CCOHS, 2001)

NAB (Nilai Ambang Batas) adalah standar faktor tempat kerja yang dapat diterima tenaga kerja tanpa mengakibatkan penyakit atau gangguan kesehatan dalam pekerjaan sehari-hari untuk waktu tidak melebihi 8 jam sehari atau 40 jam seminggu. Biasanya ahli higiene industri menggunakan parameter yang disebut *Wet Bulb Globe Thermometer (WBGT)* Index atau Indeks Suhu Bola Basah (ISBB), yaitu penggabungan parameter suhu udara kering, suhu basah bola dan suhu globe/radiasi.

Sesuai Undang-undang nomor 1 tahun 1970 tentang ditetapkannya syarat-syarat keselamatan dan kesehatan kerja, salah satu sumber bahaya yang ditemukan di tempat kerja adalah bahaya kondisi fisik berupa iklim kerja panas. Hal ini diperjelas dengan keluarnya KepMenaker No 51 tahun 1999 tentang NAB faktor fisika di tempat kerja, tertera dalam pasal 1, dimana NAB iklim kerja bagi pekerja yang terus menerus selama 8 jam sehari dengan beban kerja sedang adalah ISBB sebesar 26,7\(^{0}\)C.

Kegiatan menyangkut temperatur udara yang tinggi, pancaran sumber panas, humiditas yang tinggi, kontak fisik langsung dengan objek yang panas, ataupun aktifitas kerja fisik yang berat memiliki potensi besar menimbulkan *heat stress* pada pekerja yang melakukannya. Tempat-tempat ini termasuk industri pengecoran logam, pemasakan batu bata dan pabrik keramik, pembuatan produk dari kaca, pabrik produk karet, ruang elektrikal terutama ruang boiler, pembuatan roti, dapur komersial, *laundry* (binatu), pengalengan makanan, pabrik kimia, tambang, peleburan, dan terowongan beruap. (OSHA, 1999)

Hasil penelitian yang dilakukan oleh Soemarko (2002) menyebutkan bahwa salah satu faktor yang mempengaruhi kenyamanan lingkungan kerja adalah suhu lingkungan kerja. Jika suhu terlalu tinggi, yang disebut dengan lingkungan kerja
panas, selain mengganggu kenyamanan, juga mempengaruhi keseimbangan cairan dan elektrolit tubuh; jika jumlah cairan dan elektrolit yang masuk tidak cukup, produksi urin akan menurun dan kepekatan urin meningkat (hipersaturasi/superaturasi). Keadaan ini bila berlangsung cukup lama dapat mendorong terbentuknya antara lain kristal dan batu asam urat di saluran kemih. Diperoleh prevalensi kristal asam urat pada penelitian ini sebesar 45,2 %. Hal di atas sejalan dengan penelitian yang dilakukan Borghi et al (1993) yang memeriksa prevalensi terjadinya batu ginjal (stone disease) dan faktor risiko terjadinya batu di saluran kemih (urinary stone risk) masinis di pabrik pembuatan kaca bersuhu 29-31°CWBGT, diperoleh hasil prevalensi nephrolithiasis sebesar 8,5% (20 dari 236 orang), sedangkan prevalensi pada kelompok kontrol yang bekerja pada temperatur normal sebesar 2,4% (4 dari 165). Terjadi insidens yang tinggi (38,8%) berupa jenis batu asam urat pada pekerja yang terpapar keadaan heat stress. Dari studi ini dapat dipastikan bahwa dehidrasi kronis merepresentasi faktor risiko keadaan lithogenic, terutama terhadap batu jenis asam urat, dan perlunya minum yang cukup pada pekerja yang bekerja di lingkungan panas.

Atan et al (2005) mempelajari insiden urinary Lithiasis dan perubahan metabolisme pada pekerja laki-laki di industri besi yang terpapar panas memperoleh hasil dari 10.326 pekerja, 181 (1,75%) telah mengalami paling sedikit satu kali menderita urinary stones. Dari penderita ini, 103 pekerja bekerja di lingkungan panas (8,0%) dan 78 pekerja bekerja pada suhu ruang kamar (0,9%; \(p < 0.001 \)). Evaluasi metabolisme menunjukkan grup yang bekerja di lingkungan panas dibandingkan grup yang bekerja di lingkungan suhu kamar, menunjukkan lebih sering terjadinya
hypocitraturia (55.8% dari 28%, \(p = 0.03 \)) dan volume urin yang sedikit (79.4% dari 48%, \(p = 0.01 \)). Sehingga diambil kesimpulan pekerja yang terpapar panas 9 kali lebih berisiko untuk menderita Lithi

Keberhasilan menghindari problem yang berhubungan dengan lingkungan pekerjaan yang memiliki paparan panas memerlukan kerja sama yang baik antara pekerja dan manajemen. Setiap individu pekerja sebaiknya mampu untuk menetapkan keadaan apakah dia menerima efek negatif dari kekuatan panas (heat strain). Manajemen harus memastikan bahwa pekerja mengerti gejala penyakit yang dapat timbul akibat paparan panas dan memperhatikan keadaan mereka dan pekerja lainnya. Manajemen juga harus memastikan bahwa program pengontrolan yang semestinya dijalankan untuk mencegah masalah heat stress. (NCDOL, 2001)

Hotel yang bernama X telah berdiri sejak tahun 1978 dan sejak itu pula unit binatu dan dapur telah beroperasi. Lingkungan kerja yang panas telah diupayakan dengan engineering control berupa pemasangan exhaust fan maupun ventilator, namun manajemen menyadari adanya lingkungan kerja yang tidak nyaman bagi pekerja, sehingga perlu dilakukan pengkajian atas keadaan kesehatan pekerja yang sehari-harinya mengalami heat stress. Disamping itu pula pihak manajemen mengharapkan adanya saran dan rekomendasi dari hasil penelitian yang akan diperoleh.

Survei awal yang dilakukan pada tgl 6 Maret 2007 di binatu hotel X menunjukkan bahwa hampir semua pekerja yang bekerja pada lingkungan kerja yang panas tersebut mengeluh merasa panas dan banyak mengeluarkan keringat, serta sebagian mengeluh sering merasa sakit pada pinggang belakang, namun laporan

Oleh karena itu peneliti ingin melihat keadaan kesehatan pekerja khususnya dalam hal terjadinya kristalisasi urin pada pekerja, sehingga menetapkan judul "Hubungan Faktor-Faktor Heat Stress Dengan Terjadinya Kristalisasi Urin Pada Pekerja Binatu dan Dapur Hotel X" sehingga nantinya diharapkan pihak manajemen dapat menerapkan program kesehatan kerja, khususnya dalam penanganan heat stress di perusahaan ini.

1.2. Perumusan Masalah

Hampir semua pekerja yang bekerja di unit binatu Hotel X Medan mengeluh merasa haus, banyak mengeluarkan keringat dan merasa lelah, bahkan mereka mengaku sehari-hari bekerja tidak memakai pakaian karena merasa panas yang berlebihan. Beberapa pekerja mengeluhkan seringnya merasa sakit pada pinggang. Pada pengamatan lingkungan tidak terlihat adanya tersedia air minum di dekat dengan lingkungan kerja.
Berdasarkan keluhan pekerja, pengamatan lingkungan, dan hasil pengukuran heat stress dengan ISBB diatas NAB yang ditetapkan, maka perlu dikhawatirkan akan kurangnya masukan cairan atas pekerja, sehingga perlu dilakukan penelitian terhadap terjadinya kristalisasi urin yang diperkirakan dapat terjadi akibat keadaan keseimbangan cairan yang terganggu.

1.3. Landasan Teori

Tubuh manusia sebagai mahluk berdarah panas dapat secara konstan mempertahankan temperatur internalnya, walaupun tubuh dalam keadaan terpapar oleh temperatur lingkungan yang bervariasi. Untuk mempertahankan temperatur tubuh internal dalam batasan yang aman, tubuh harus mengeluarkan panas, khususnya melalui perubahan kecepatan dan jumlah sirkulasi darah di bawah kulit dan mengeluarkan cairan melalui kulit oleh kelenjar keringat. Respon otomatis ini biasanya terjadi pada temperatur darah mencapai 98,6°F (37°C) dan dalam keseimbangan yang dikontrol oleh otak. Pada proses penurunan temperatur tubuh internal, jantung akan mulai memompakan lebih banyak darah, pembuluh darah mengembang untuk mengimbangi peningkatan kecepatan darah, dan kapiler darah yang berada di bawah permukaan kulit akan berisi darah. Sirkulasi darah terjadi disepanjang permukaan kulit, dan panas akan disalurkan keluar tubuh. Apabila panas yang dikeluarkan dari meningkatnya sirkulasi darah melalui kulit tidak mencukupi, otak akan merasakan keadaan panas dan mengirim perintah kepada kelenjar keringat dikulit untuk mengeluarkan keringat yang banyak. Penguapan keringat akan
mendinginkan kulit, mengeluarkan panas dalam jumlah yang besar dari dalam tubuh. (*NCDOL*, 2001)

OSHA (*Occupational Safety and Health Administration*) mendefinisikan *heat stress* sebagai keadaan agregasi (pengumpulan) atas keadaan lingkungan dan faktor fisik yang menggambarkan kekuatan penerimaan tubuh akan panas yang diterima tubuh. Faktor lingkungan dari *heat stress* adalah temperatur udara dan pergerakannya, tekanan uap air (humiditas), dan radiasi (pancaran) panas. Kerja fisik berkontribusi terhadap *heat stress* total dalam bekerja dengan menurunkan panas metabolis tubuh dalam proporsii untuk bekerja lebih banyak. Jumlah karakteristik panas, dan jenis pakaian yang dipakai juga mempengaruhi terjadinya *heat stress* dengan mengubah kecepatan pergantian panas dari kulit ke lingkungan.

Dalam keadaan temperatur lingkungan mendekati temperatur normal kulit, pendinginan tubuh akan menjadi sulit. Apabila temperatur udara menjadi sehangat atau lebih hangat dari temperatur kulit, darah yang berjalan ke permukaan tubuh tidak mampu mengeluarkan panas dari dalam tubuh. Pada kondisi ini, jantung akan terus memompa darah ke permukaan tubuh, kelenjar keringat mengeluarkan cairan yang mengandung elektrolit ke permukaan kulit dan penguapan melalui keringat menjadi hal terpenting yang paling efektif untuk mempertahankan temperatur tubuh yang konstan. Keringat tidak akan mendinginkan tubuh kecuali jika cairan keluar dari kulit melalui penguapan. Dalam kondisi kelembaban udara yang tinggi, penguapan kelenjar keringat dari kulit akan menurun dan usaha tubuh untuk mempertahankan temperatur tubuh dapat secara nyata terhalang. Kondisi ini sebaliknya mempengaruhi kemampuan individu untuk bekerja pada lingkungan yang panas. Dengan begitu
banyaknya darah yang dialirkan ke permukaan tubuh, maka akan secara relatif berkurang ke otot yang aktif, otak, dan organ internal lainnya; terjadi penurunan dan rasa lelah yang begitu cepat. (*NIOSH*, 1986)

Hasil penelitian yang dilakukan oleh Soemarko (2002) menyebutkan bahwa salah satu faktor yang mempengaruhi kenyamanan lingkungan kerja adalah suhu lingkungan kerja. Jika suhu terlalu tinggi, yang disebut dengan lingkungan kerja panas, selain mengganggu kenyamanan, juga mempengaruhi keseimbangan cairan dan elektrolit tubuh; jika jumlah cairan dan elektrolit yang masuk tidak cukup, produksi urin akan menurun dan kepekatan urin meningkat (hipersaturasi/superaturasi). Keadaan ini bisa berlangsung cukup lama dapat mendorong terbentuknya antara lain kristal dan batu asam urat di saluran kemih. Pada penelitiannya terhadap pekerja binatu sebanyak 64 orang, dapur utama 166 orang dan dapur restoran 29 orang di hotel X di Jakarta memperoleh hasil ternyata 93 dari 206 pekerja (45,2 %) kristal asam urat dalam urinnya positif, berarti prevalensi kristal asam urat pada penelitian ini adalah 45,2 %.

1.4. **Tujuan Penelitian**

1.4.1. **Tujuan Umum**

Untuk mengetahui adanya hubungan faktor-faktor heat stress dengan terjadinya kristalisasi urin pada pekerja di Binatu dan Dapur Hotel X, Medan.

1.4.2. **Tujuan Khusus**

1. Untuk mengetahui prevalensi kristalisasi urin di kalangan pekerja di unit Binatu dan Dapur Hotel X, Medan.
2. Untuk mengetahui jenis kristalisasi urin yang terjadi pada pekerja yang mengalami kristalisasi urin di unit Binatu dan Dapur Hotel X, Medan.

1.5. Hipotesis

1.6. Manfaat Penelitian

1.6.1. Dapat memberikan masukan kepada perusahaan usulan penerapan program kesehatan kerja dalam upaya penanggulangan heat stress dan terjadinya kristalisasi urin.

1.6.2. Memberikan informasi dan masukan yang bermanfaat bagi pekerja sehingga pekerja mampu menilai heat stress yang terjadi pada dirinya maupun pada teman sekerjanya, serta memberikan informasi tindakan pencegahan yang dapat dilakukan oleh pekerja.

1.6.3. Memberikan informasi dan masukan bagi penelitian sejenis dan dapat dijadikan masukan bagi pemerintah, lembaga pendidikan maupun masyarakat umum yang tanggap terhadap persoalan-persoalan kesehatan kerja untuk dilakukan penelitian.
BAB 2
TINJAUAN PUSTAKA

2.1. Tekanan Panas (Heat stress)

2.1.1 Definisi Heat Stress

Tekanan panas atau heat stress adalah batasan kemampuan penerimaan panas yang diterima pekerja dari kontribusi kombinasi metabolisme tubuh akibat melakukan pekerjaan dan faktor lingkungan (seperti temperatur udara, kelembaban, pergerakan udara, dan radiasi perpindahan panas) dan pakaian yang digunakan. Keadaan heat stress ringan ataupun sedang dapat menyebabkan rasa tidak nyaman dan berakibat buruk terhadap penampilan kerja dan keselamatan, meskipun hal ini tidak menimbulkan kerugian dalam hal kesehatan pekerja. Pada saat heat stress mendekati batas toleransi tubuh, risiko terjadinya kelainan kesehatan menyangkut panas akan meningkat.(ACGIH, 2001).

Menurut WorkSafe BC (2007) banyak variabel yang berkontribusi terhadap terjadinya heat stress menyangkut:

- Lingkungan yang terdiri atas temperatur udara, pergerakan udara, kelembaban, dan radiasi panas.
- Pekerja, termasuk terjadinya aklimatisasi, jumlah cairan tubuh, pakaian, dan keadaan kesehatan pekerja.
- Pekerjaan, berupa beban kerja dan waktu kerja. Untuk mencegah terjadinya heat stress, pekerja dan majikan harus mampu mengidentifikasi semua sumber panas dan memahami bagaimana tubuh memindahkan panas.
Gambar 2.1 : Variabel yang berkontribusi terhadap heat stress.

OSHA (Occupational Safety & Health Administration) dalam Technical Manual nya mengatakan pekerjaan yang menyangkut temperatur udara yang tinggi, radiasi sumber panas, kelembaban yang tinggi, kontak fisik langsung dengan objek panas, atau aktivitas fisik yang berat memiliki potensi tinggi dalam menimbulkan heat stress pada pekerja yang terlibat dalam kegiatan kerja tersebut, seperti pada pekerjaan pengecoran besi, pengecoran logam lain, pembakaran batu bata dan pabrik keramik, pabrik gelas atau kaca, pabrik pengolahan bahan karet, perlengkapan listrik (terutama ruang ketel uap), dapur (bakeries), pabrik gula gula, dapur komersil, binatu, pengalengan makanan, pabrik kimia, pertambangan, peleburan, dan terowongan uap.

2.1.2 Heat Strain

Heat strain merefleksikan perpanjangan seseorang dalam melindungi diri untuk mempertahankan panas tubuh total dan temperatur tubuh inti dalam batasan yang dapat bekerja dan hidup. Hal ini berupa karakteristik yang unik pada setiap

NCDOL (2001) menerangkan bahwa panas tubuh harus disalurkan ke lingkungan; pada saat panas tubuh disalurkan ke permukaan kulit, beberapa mekanisme terjadi seperti evaporasi, konveksi dan radiasi:

- Evaporasi : keluarnya keringat merupakan mekanisme tubuh yang paling efektif untuk mengeluarkan panas pada keadaan panas dan/atau lingkungan kerja berat. Kehilangan panas sekitar 0,58 Kcal/gram keringat keluar melalui kulit. Hampir seluruh permukaan tubuh mengandung kelenjar keringat, yang akan diaktifkan berdasarkan tingkatannya oleh kontrol otak. Rata-rata pengeluaran maksimal keringat dapat dipertahankan tubuh yang sehat, laki-laki yang telah ber aklimatisasi adalah sebanyak 0,9463 liter per jam. Agar
efektif dalam mendinginkan tubuh, keringat harus keluar berupa penguapan dari kulit. Penguapan keringat sebanyak diatas melalui kulit akan mengeluarkan panas kira-kira sebanyak 600 Kcal. Kecepatan penguapan yang sesungguhnya bergantung pada beberapa faktor lingkungan, termasuk temperatur, kelembaban relatif dan kecepatan angin.

- Konveksi: proses konveksi menyangkut penyaluran panas dari kulit ke udara di lingkungan. Kecepatan hilangnya panas oleh konveksi bergantung atas beberapa faktor seperti temperatur udara, kecepatan angin, dan jenis pakaian yang dipakai. Apabila udara lebih panas dari kulit, perpindahan arah berlawanan dari lingkungan ke kulit dapat terjadi.

- Radiasi: panas yang disalurkan oleh inframerah atau radiasi panas menyangkut aliran energi panas dari permukaan yang lebih panas ke permukaan yang lebih dingin. Kulit yang telah hangat oleh karena aliran panas dari inti tubuh menyalurkan panas ke lingkungan. Apabila lingkungan termasuk permukaan atau sistem seperti sumber panas atau ketel uap yang mana secara signifikan lebih panas dari permukaan kulit, aliran panas radiasi dapat berlangsung arah berlawanan yaitu dari lingkungan ke tubuh, yang akan menambahkan jumlah kapasitas panas total tubuh. Kecepatan aliran panas oleh radiasi adalah sebagaimana fungsi dari tipe permukaan yang terlibat dan perbedaan temperatur antara mereka. Arah aliran panas radiasi adalah tetap dari permukaan yang lebih panas ke permukaan yang dingin. Kemampuan permukaan untuk menyerap dan menyalurkan panas adalah fungsi utama dari
warna dan tekstur permukaan tersebut. Pemakaian pakaian berwarna terang bermaksud untuk menghambat atau menurunkan efek panas radiasi.

2.1.3 Kesehatan, Umur dan Ukuran kerja mempengaruhi pengaturan panas tubuh.

NCDOL (2001) juga menyebutkan bahwa setelah kita mengetahui hal pokok yang digunakan tubuh untuk menyalurkan panas dari temperatur inti tubuh, kita juga harus memperhitungkan beberapa faktor fisiologis yang dapat membatasi terjadinya hal di atas. Faktor-faktor ini menyangkut ukuran kerja, umur, ukuran dan bentuk tubuh, tingkat aklimatisasi, kondisi jantung dan kulit, dan ada tidaknya cairan dan garam sebagai pengganti keringat yang hilang, sebagai berikut:

• Umur, secara umum pekerja yang berumur 40 tahun ke atas dalam ketidak beruntungan dibanding pekerja yang lebih muda dalam bekerja rutin di lingkungan panas. Kekuatan maksimum pemompaan jantung menurun dengan pertambahan umur, yang akan membatasi kemampuan tubuh untuk menyalurkan panas dari inti tubuh ke permukaan kulit. Efisiensi mekanisme pengeluaran keringat yang biasanya penting dalam banyaknya panas yang berpindah dari kulit selama kerja yang berat, juga berkurang dengan bertambahnya umur. Pekerja yang lebih tua umumnya berkeringat lebih lama, dan berkeringat dengan kecepatan yang lambat dibanding pekerja muda. Konsekuensinya, pekerja tua cenderung meningkatkan panas inti tubuh selama bekerja di tempat panas dan membutuhkan waktu istirahat yang lebih panjang untuk pemulihan ke tingkat yang normal.

pekerja melanjutkan bekerja berhari-hari dalam kondisi heat stress, gejala heat strain yang terjadi akan berkurang sebagai akibat terjadinya proses aklimatisasi panas. Wirakusumah (2001) menerangkan penggunaan Indeks Massa Tubuh (IMT) yang merupakan penentuan berat badan sehat yang sekarang banyak juga dipakai dan berlaku untuk orang dewasa, dengan perhitungan sebagai berikut:

\[
\text{IMT} = \frac{\text{Berat Badan (kg)}}{\text{Tinggi Badan (m)}^2}
\]

IMT ideal perempuan = 19 – 24 ; IMT ideal laki-laki = 20 – 25.

- Cairan dan Garam, oleh sebab pengeluaran keringat merupakan proses pelepasan panas tubuh dalam paparan panas, diperlukan penggantian cairan yang konstan atas keluarnya keringat. Apabila pengeluaran cairan dan garam atas proses keringat tidak terganti, dehidrasi yang berat dapat terjadi (NCDOL, 2001). Dehidrasi merupakan keadaan yang terjadi pada tubuh apabila masukan cairan tidak cukup untuk mengganti cairan yang keluar melalui urin, pernafasan dan proses keluarnya keringat (ACCI, 1998). Rasa haus saja tidak dapat menjadi patokan atas jumlah kehilangan cairan akibat bekerja secara terus menerus pada lingkungan panas, hal ini merupakan indikator buruk untuk mengetahui tingkat dehidrasi yang terjadi. Penyaluran air dingin yang banyak harus tersedia bagi pekerja
yang berada di lingkungan kerja panas. Mereka harus diingatkan untuk minum secara teratur dari pada menunggu hingga adanya rasa haus. Minum segelas air setiap 15 menit hingga 20 menit bekerja adalah cara yang baik untuk mempertahankan keseimbangan cairan tubuh dalam kondisi heat stress (NCDOL, 2001). Kebutuhan cairan bervariasi bergantung kepada temperatur (heat stress), pakaian yang digunakan, tingkat aklimatisasi, dan tingkat aktifitas fisik yang dilakukan. Kebutuhan cairan sehari-hari bagi seorang yang beraktivitas pasif hingga yang sangat aktif berkisar 2-4 liter per hari pada lingkungan yang normal, dan 4-10 liter per hari pada lingkungan yang panas. (Sawka et al, 1997).

2.1.4 Aklimatisasi Panas

Mengutip penjelasan dari ACGIH (2001) aklimatisasi panas memudahkan pekerja untuk menahan heat stress dengan mengurangi heat strain. Aklimatisasi terhadap panas menyangkut serangkaian kompensasi yang terjadi pada individu yang membantu penyelamatan diri atas perubahan lingkungan. Bekerja bahkan pada batasan sedang dalam tekanan panas akan menyebabkan perubahan fisiologis secara substansial menyempurnakan kenyamanan dan keselamatan bagi mereka yang dalam kondisi sehat. Efek aklimatisasi selalu nyata dan dimulai pada saat awal 30 menit aktifitas fisik yang dilakukan setiap hari dalam waktu paling sedikit 1 minggu atau lebih cepat dari itu.

Keseimbangan cairan tubuh dan elektrolit juga membaik dengan terjadinya aklimatisasi, walaupun efek ini hampir tidak dapat dilihat, dibanding peningkatan kenyamanan terhadap paparan panas. Kemahiran aklimatisasi terhadap panas bersifat sebagai kesatuan rangkaian. Tidak semua perubahan fungsi tubuh terjadi dalam tingkat yang sama dalam kesatuan rangkaian dan belum ada parameter fisiologis yang mendominasi proses kesatuan rangkaian tersebut.

Tiga fase aklimatisasi panas yang berlangsung secara simultan, yaitu:

- Fase awal (initial), yang terjadi secara berurutan pada beberapa hari pertama terpapar panas, mencapai 33 % dalam tingkat optimum pada hari ke 4.

- Fase pertengahan (intermediate), ditandai dengan stabilitas sistem kardio vaskular dan penurunan temperatur tubuh permukaan maupun inti tubuh, mencapai 44 % dalam tingkat optimum pada hari ke 8.

- Fase akhir, terjadi penurunan jumlah keringat dan osmolaritas urin dan kompensasi lain untuk memelihara kelestarian cairan tubuh dan
mengganti elektrolit yang hilang, mencapai 65 % dalam tingkat optimum pada hari ke 10, 93 % pada hari ke 18, dan 99 % pada hari ke 21.

2.2 Pengukuran Heat stress

Sesuai Keputusan Menteri Tenaga Kerja No 51, tahun 1999 tentang NAB faktor fisika di tempat kerja menggunakan parameter ISBB (Indeks Suhu Basah dan Bola) dengan terminasi Inggris WBGT (Wet Bulb Globe Temperature Index) atas ketentuan sebagai berikut:

1. Iklim kerja : hasil perpaduan antara suhu, kelembaban, kecepatan gerakan udara, dan panas radiasi dengan tingkat pengeluaran panas dari tubuh tenaga kerja sebagai akibat pekerjaannya.
2. Nilai Ambang Batas (NAB) : standar faktor tempat kerja yang dapat diterima tenaga kerja tanpa mengakibatkan penyakit atau gangguan kesehatan, dalam pekerjaan sehari-hari untuk waktu tidak melebihi 8 jam sehari atau 40 jam seminggu.
3. Indeks Suhu Bola Basah (ISBB) : parameter untuk menilai tingkat iklim kerja yang merupakan hasil perhitungan antara suhu udara kering, suhu basah alami, dan suhu bola.
4. Suhu udara kering (dry bulb temperature) : suhu yang ditunjukkan oleh termometer suhu kering.
5. Suhu Basah Alami (natural wet bulb temperature) : suhu yang ditunjukkan oleh termometer bola basah alami. Merupakan suhu penguapan air yang pada
suhu yang sama menyebabkan terjadinya keseimbangan uap air di udara, suhu ini biasanya lebih rendah dari suhu kering.

Suhu ini sebagai indikator tingkat radiasi.

ISBB untuk pekerjaan diluar ruangan dengan panas radiasi adalah :

\[
\text{ISBB} = 0.7 \text{ Suhu Basah Alami} + 0.2 \text{ Suhu Bola} + 0.1 \text{ Suhu Kering}
\]

ISBB untuk pekerjaan didalam ruangan tanpa panas radiasi adalah :

\[
\text{ISBB} = 0.7 \text{ Suhu Basah Alami} + 0.3 \text{ Suhu Bola}
\]

NAB iklim kerja yang menggunakan parameter ISBB dapat dilihat pada tabel berikut sbb :

<table>
<thead>
<tr>
<th>Pengaturan Waktu Kerja setiap jam</th>
<th>ISBB (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Beban Kerja</td>
</tr>
<tr>
<td></td>
<td>Ringan</td>
</tr>
<tr>
<td>Kerja terus menerus (8 jam sehari)</td>
<td>30.0</td>
</tr>
<tr>
<td>75 %</td>
<td>30.6</td>
</tr>
<tr>
<td>50 %</td>
<td>31.4</td>
</tr>
<tr>
<td>25 %</td>
<td>32.2</td>
</tr>
</tbody>
</table>

Sumber : KepMenaker 51/1999 pasal 2.
2.3 **Mekanisme Fisiologis Pengaruh paparan panas.**

- **Pelebaran pembuluh darah kulit.**

- **Perubahan pada kelenjar keringat yaitu meningkatnya jumlah kelenjar keringat yang aktif serta meningkatnya sekresi kelenjar keringat.**

 Dengan adanya mekanisme pengaturan yang seperti ini, suhu tubuh dapat dipertahankan hampir menetap walaupun suhu lingkungan berubah-ubah. Pengeluaran cairan tubuh yang baik melalui kulit (kereringat dan evaporation) maupun organ lainnya, dalam keadaan normal akan dapat dikompensasi dengan cairan yang masuk baik melalui makanan, minuman dan sebagai hasil oksidasi sel.

kekurangan volume plasma adalah hipotensi ortostatik dengan menurunnya tekanan darah sedikitnya 10 mmHg.

Suma’mur (1980) menggambarkan pengaruh dari tekanan panas dan kelainan-kelainan akibat panas sebagai berikut :

Gambar 2.2 : Pengaruh tekanan panas dan kelainan-kelainan akibat panas.

Menurut Borghi (1999) keadaan supersaturasi adalah kekuatan energi yang diperlukan dalam pembentukan phase pada dalam urin, dan jalan praktis untuk menguranginya adalah dengan meningkatkan volume urin.

Demikian juga penelitian yang telah dilakukan Borghi, 1993 terhadap pekerja pabrik gelas yang terpapar panas dengan suhu 29-31°C WBG_T di lingkungan kerja selama lebih dari 5 tahun menemukan batu asam urat di saluran kemih pada sekitar 38,8 % pekerja yang mengeluh pegal atau nyeri di daerah pinggang dan/atau rasa panas atau sakit saat buang air kecil. Studi ini memastikan bahwa dehidrasi kronis menciptakan faktor risiko berbahaya, terutama terhadap batu asam urat, dan masukan cairan yang adekuat dianjurkan dalam pekerjaan yang terpapar panas.

Atan (2005) dalam penelitian mempelajari insiden *urinary lithiasis* (batu saluran kemih) dan perubahan metabolik pada pekerja laki-laki di industri besi yang terpapar panas pada lingkungan kerjanya memperoleh hasil dari 10.326 pekerja, 181 (1,75 %) telah mengalami sedikitnya sekali terjadi *urinary stone*. Dari yang terkena, 103 orang yang bekerja di lingkungan panas (8,0 %) dan 78 bekerja pada temperatur ruang (0,9 %; P<0,001). Sehingga kesimpulannya bahwa pekerja pada temperatur panas sembilan kali kemungkinan memiliki risiko terjadinya *lithiasis*.

2.4 Urin

Komposisi urin adalah terdiri atas cairan sampah metabolisme seperti urea, garam-garam terlarut dan material organik lain. Cairan dan material mengalami penyaringan di ginjal, untuk menghasilkan urin, yang berasal dari darah atau cairan antar sel. Komposisi urin disesuaikan dalam proses reabsorbsi apabila ada molekul yang dibutuhkan kembali oleh tubuh, seperti glukosa, akan diserap kembali ke dalam aliran darah melalui molekul pembawa. Sisa cairan mengandung konsentratasi urea yang tinggi dan beberapa zat yang memiliki potensi racun akan dikeluarkan dari tubuh melalui urinase. Komponen lain termasuk beberapa variasi garam inorganik seperti *sodium chloride* (Natrium Klorida).

pH urin mendekati netral (7), tetapi secara normal dapat bervariasi antara 4.5 sampai 8. Keadaan asam atau basa yang terlalu kuat dapat menjadi acuan sebagai
gejala penyakit tertentu. Jumlah urin diproduksi bergantung atas beberapa faktor termasuk tingkat hydrasi, aktifitas, faktor lingkungan, ukuran tubuh, dan kesehatan. Pada manusia dewasa produksi rata-rata urin berkisar 1-2 liter per hari.

2.5 Kristalisasi Urin

Adalah hal yang tidak mungkin melarutkan jumlah Kalsium, Phosphate, dan Oksalat dalam spesimen urin 24 jam dengan 1 hingga 2 liter air. Oleh karena itu dipastikan bahwa ada zat inhibitor (penghambat) pada saat kristalisasi terjadi. Diketahui inhibitor kristalisasi urin adalah pyrophosphate, citrate, magnesium, dan beberapa makromolekul tertentu. Protein Tamm-Horsfall dipercaya sebagai inhibitor penting pada Kalsium Oksalat.
2.5.1 Terbentuknya kristal dapat terjadi oleh:

- Penambahan konsentrasi diluar kapasitas supersaturasi. Situasi ini sebagai hasil penurunan kekentalan urin seperti pada kasus kurangnya masukan cairan. Keadaan ini juga dapat disebabkan oleh pengeluaran cairan yang berlebihan.

- Penurunan kapasitas supersaturasi. Situasi ini dapat disebabkan oleh turunnya kepekatan (konsentrasi) inhibitor (zat penghambat), netralisasi dari zat inhibitor oleh adanya elektrolit ataupun perubahan pH urin.

Bhairvi (1996) membuat daftar keadaan biokimia yang mengarah kepada batu saluran kemih, sebagai berikut:

<table>
<thead>
<tr>
<th>Disorder</th>
<th>Diagnostic findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypercalciuria</td>
<td>Urinary calcium > 300 mg/24 hr</td>
</tr>
<tr>
<td>Hyperuricosuria</td>
<td>Urinary uric acid > 750 mg/24 hr</td>
</tr>
<tr>
<td>Hyperoxaluria</td>
<td>Urinary oxalate > 40 mg/24 hr</td>
</tr>
<tr>
<td>Hypocitraturia</td>
<td>Urinary citrate < 320 mg/day</td>
</tr>
<tr>
<td>Gouty diathesis</td>
<td>Urinary pH < 5.5, gouty arthritis</td>
</tr>
<tr>
<td>Hypomagnesuria</td>
<td>Urinary magnesium < 50 mg/24 hr and no diarrheal disorder</td>
</tr>
</tbody>
</table>

2.5.2 Komposisi batu saluran kemih yang dapat terjadi

Komposisi batu saluran kemih dapat berupa Calcium Oxalate atau Calcium Phosphate, Triple Phosphates, Uric Acid (Asam Urat), dan Cystine. Dapat dilihat pada tabel 2.2 dibawah ini.

Tabel 2.3 : Komposisi batu saluran kemih yang dapat terjadi.

<table>
<thead>
<tr>
<th>Urolithiase composition and occurrence</th>
<th>Occurence in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium oxalate</td>
<td></td>
</tr>
<tr>
<td>Whewellite (mono-hydrate)</td>
<td>70</td>
</tr>
<tr>
<td>Weddellite (di-hydrate)</td>
<td></td>
</tr>
<tr>
<td>Calcium phosphate</td>
<td>10</td>
</tr>
<tr>
<td>Hydroxyl-apatite</td>
<td></td>
</tr>
<tr>
<td>Carbonate-apatite</td>
<td></td>
</tr>
<tr>
<td>Calcium hydrogen phosphate (Brushite)</td>
<td></td>
</tr>
<tr>
<td>Tri-calcium phosphate (Whitlockite)</td>
<td></td>
</tr>
<tr>
<td>Triple phosphates (Magnesium ammonium phosphate) (Struvite)</td>
<td>5 to 10</td>
</tr>
<tr>
<td>Uric acid</td>
<td><5</td>
</tr>
<tr>
<td>Cystine</td>
<td>1</td>
</tr>
</tbody>
</table>

2.5.3 Patologi Saluran Kemih

Bahdarsyam (2000), menerangkan patologi batu saluran kemih biasanya terjadi akibat gangguan keseimbangan antara bahan pembentukan batu dengan faktor penghambat. Dan juga diketahui ginjal harus menghemat air tetapi juga harus mengeskresikan materi yang mempunyai kelarutan yang rendah. Kedua keperluan yang berlawanan dari fungsi ginjal tersebut harus dipertahankan keseimbangannya
terutama selama penyesuaian terhadap kombinasi diet, iklim dan aktivitas.
Masalahnya sampai seberapa luas kejadian batu berkurang dengan fakta adanya bahan yang terkandung di urin yang menghambat kristalisasi garam kalsium dan yang lainnya yang mengikat kalsium dalam komplek larut. Bila urin menjadi sangat jenuh dengan bahan yang tidak larut (seperti ; kalsium, asam urat, oksalat, dan sistin) karena tingkat ekksresi yang berlebihan dan atau karena penghematan air yang ekstrim dan juga zat protektif terhadap kristalisasi kurang sempurna atau menurun (seperti; pirofosfat, magnesium dan sitrat), menyebabkan terjadinya kristalisasi yang kemudian berkembang dan bersatu membentuk batu. Dengan demikian terlihat bahwa keseimbangan antara faktor penghambat dengan faktor pembentuk sangat berpengaruh terhadap pembentukan batu urin ini. Batu urin terdiri dari dua komponen, yaitu komponen kristal dan komponen matrik :

- Komponen matrik : merupakan bahan non kristal, bervariasi sesuai tipe batu secara umum dengan kisaran 2-10 % dari berat batu. Komposisinya terutama terdiri protein, sejumlah kecil hexose dan hoxosamine.

2.5.4 Beberapa Kristal ditemui secara nyata pada urin yang asam, beberapa lainnya pada urin basa.

Kristal berbentuk amorphous biasanya ditandai atas dasar pH urin. Pada spesimen asam, asam urat ditemui, pada spesimen basa ditemui kristal amorphous jenis phosphate dan tripel phosphate terkadang ditemui pada spesimen asam ringan (pH 6,5). Jenis kristal yang sering dijumpai pada urin berdasarkan pH urin dapat dilihat pada tabel berikut.

Tabel 2.4: Jenis Kristal yang sering dijumpai pada urin berdasarkan pH urin.

<table>
<thead>
<tr>
<th></th>
<th>Alkaline pH</th>
<th>Acid pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amorphous</td>
<td>Amorphous phosphates</td>
<td>Amorphous urates</td>
</tr>
<tr>
<td>phosphates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triple</td>
<td>Triple phosphates</td>
<td>Uric acid</td>
</tr>
<tr>
<td>phosphates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonium</td>
<td>Ammonium biurates</td>
<td>Calcium oxalates</td>
</tr>
<tr>
<td>biurates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>Calcium phosphates</td>
<td></td>
</tr>
<tr>
<td>phosphates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcium</td>
<td>Calcium carbonates</td>
<td>Cystine</td>
</tr>
<tr>
<td>carbonates</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Asam urat di urin dapat sebagai nidus untuk deposisi dan perkembangan dari kristal kalsium oksalat dan asam urat dapat berinteraksi atau bercampur dengan inhibitor kalsium dengan demikian menyebabkan pembentukan batu kalsium. Hal inilah yang menyebabkan seringnya batu kalsium oksalat ditemui pada pasien penderita gouty nephropathy dari pada populasi normal, sedangkan hiperurikosuria (asam urat berlebihan pada urin) sering terlihat pada pasien dengan batu kalsium oksalat ginjal. (Bahdarsyam, 2000)
2.5.5 Pencegahan Terjadinya Batu Saluran Kemih

Borghi (1999) mengatakan bahwa pemasukan cairan yang tinggi adalah pengobatan tertua dalam perawatan batu ginjal, dan sejak beberapa dekade yang lalu, hal ini merupakan pencegahan yang dilakukan para klinisi dalam penyembuhan kasus batu.

Volume urin yang rendah harus dianggap sebagai faktor risiko yang sesungguhnya, menyangkut kedua hal terbentuknya batu ginjal dan pengulangan batu. Peningkatan volume urin disebabkan masukan cairan yang tinggi menghasilkan pengaruh menguntungkan dalam terjadinya kristalisasi kalsium oksalat dan tidak menurunkan aktifitas zat inhibitor (penghambat) alami. Masukan air yang mencukupi dan mungkin cairan lain seperti kopi, teh, bir, dan anggur memiliki efek pencegahan terhadap terjadinya batu ginjal dan kejadian ulangan. Namun masukan cairan yang banyak terutama air putih, adalah masih merupakan hal terkuat dan terekonomis dalam pencegahan terjadinya batu ginjal, dan hal ini selalu tidak digunakan oleh pasien-pasien yang pernah mengidap batu ginjal.

Pada penelitiannya Borghi menemukan peningkatan volume urin menjadi 1 sampai 2 liter per hari memperlihatkan keadaan tingkat kalsium urin pada 400 mg/hari, oksalat pada 25 mg/hari, dan asam urat urin pada 700 mg/hari dan pH 5,8 ; menghasilkan beberapa variasi sebagai berikut : \(CaOx\ Relative\ Saturation\) (RS) dari 12,87 menjadi 6,58, \(CaP\) RS dari 2,37 menjadi 0,86, Asam urat RS dari 4,02 menjadi 2,06.
BAB 3

METODE PENELITIAN

3.1 Tempat dan Waktu

3.1.1 Tempat

Penelitian dilakukan pada unit binatu dan dapur Hotel X. Adapun pemilihan lokasi ini dikarenakan:

- Perusahaan ini telah berdiri sejak tahun 1978 dan telah memiliki unit binatu dan dapur sejak ia berdiri.
- Petugas yang bekerja di unit binatu dan dapur pada umumnya tidak dirotasi ke unit kerja lainnya dan bekerja pada lingkungan panas selama 8 jam dengan istirahat makan siang dan shalat selama 1 jam.
- Pengendalian tekanan panas di lingkungan kerja telah dilakukan oleh pihak manajemen berupa *engineering control*, namun pada survei pendahuluan pengukuran *heat stress* diperoleh nilai ISBB sebesar 29,5\(^{0}\Celsius\), 30,02\(^{0}\Celsius\), dan 30,08\(^{0}\Celsius\), sehingga dirasa perlu untuk memeriksa kesehatan pekerja khususnya melihat apakah telah terjadi *heat stress* maupun kristalisasi urin pada pekerja.

3.1.2 Waktu

Waktu pelaksanaan penelitian ini dilakukan selama 7 bulan, mulai bulan Januari sampai dengan bulan Juli, dimulai dengan melakukan penelusuran kepustakaan, pengajuan judul, survei awal, mempersiapkan proposal penelitian,
pelaksanaan pengumpulan data, pengolahan dan analisa data serta penyusunan laporan penelitian, dan melakukan seminar hasil.

3.2 Populasi dan Sampel

3.2.1 Populasi

Populasi dalam penelitian ini adalah seluruh pekerja di unit binatu dan dapur hotel X, yang memenuhi kriteria inklusi.

3.2.2 Sampel

Sampel awal dalam penelitian ini merupakan total populasi sebanyak 45 orang pekerja, yaitu 17 orang di unit binatu dan 28 orang di dapur hotel X. Pembatasan subjek yang memenuhi kriteria inklusi adalah pekerja yang telah bekerja selama 3 tahun di tempat yang sama. Diperoleh sebanyak 41 orang pekerja yang memenuhi kriteria inklusi, yaitu 13 orang di unit binatu dan 28 orang di dapur.

Kriteria eksklusi adalah pekerja yang mempunyai riwayat penyakit ginjal, riwayat penyakit diabetes melitus, mengkonsumsi obat-obatan seperti anti hipertensi (thiazide) dan antasida secara rutin, serta pernah menderita penyakit gout.

3.3 Rancangan Penelitian

Rancangan penelitian ini bersifat cross sectional, untuk menganalisis faktor-faktor heat stress yang terjadi pada pekerja dan hubungannya dengan terjadinya kristalisasi urin serta faktor-faktor risiko yang menyebabkan terjadinya kristalisasi urin pada pekerja.

Hasil jadi (out come) utama pada penelitian ini adalah kristalisasi urin positif dan negatif. Survei analitik digunakan karena kristalisasi urin positif bukanlah penyakit yang fatal, selain itu saat pembentukan kristal urin tidak jelas.
3.4 Metode dan alat pengumpulan data

Dalam penelitian ini instrumen yang digunakan adalah pengukuran langsung, kuesioner serta anamnese.

- Untuk mengukur tekanan panas di lingkungan kerja dengan Heat stress Monitor yaitu pengukuran WBGT (Wet Bulb Globe Temperature) indoor, yang diterjemahkan dengan ISBB (Indeks Suhu Basah Bola).
- Dilakukan pengukuran tinggi dan berat badan pekerja berdasarkan Indeks Masa Tubuh (IMT): Berat Badan/ Tinggi Badan² dengan satuan kg/m², diperoleh ukuran tubuh kurus (<17,0-18,4), normal (18,5-25,0), gemuk (25,1- >27,0).
- Pengukuran aklimatisasi terhadap heat stress dilakukan dengan pengukuran tekanan darah, denyut jantung dan temperatur kulit pekerja sebelum dan sesudah bekerja dengan tensi meter dan thermometer air raks.
- Pengukuran prevalensi kristalisasi urin dilakukan di laboratorium yang telah terakreditasi, dengan pemeriksaan urin sewaktu sebanyak 5 cc yang diambil pagi hari sebelum waktu istirahat, pemeriksaan yang dilakukan adalah sedimen urin dan keasaman.

3.5 Jalannya penelitian

- Kepada pekerja dijelaskan tujuan penelitian dan jalannya penelitian.
- Melakukan anamnese untuk memperoleh kriteria inklusi.
Menyingkirkan kriteria eksklusi dengan anamnese adanya penyakit sistemik yang berhubungan dengan terjadinya kristalisasi urin dan kebiasaan makan obat-obatan yang berhubungan dengan terjadinya kristalisasi urin seperti obat penurun darah tinggi (thyazide) atau obat sakit maag.

Melaksanakan pemeriksaan urin pekerja dengan kriteria sampel urin sesuai dengan ketentuan yang diberikan oleh laboratorium yakni urin sewaktu. Proses pemeriksaan laboratorium melakukan sedimentasi urin yang kemudian melihat dengan mikroskop atas terjadinya kristalisasi dan menetapkan jenis kristalisasi yang terjadi.

Catatan: untuk menghindari hasil yang bias, pekerja yang dalam 3 hari sebelum pengambilan urin baru memakan jeroan atau jengkol, maka pengambilan urin ditunda setelah 3 hari.

3.6 Analisis Data

- Analisis univariat, gunanya untuk melihat deskripsi masing-masing variabel independen dan dependen.

- Analisis bivariat, untuk melihat hubungan variabel independen dengan terjadinya kristalisasi urin; uji yang digunakan adalah uji chi-square.

Data dianalisis dengan menggunakan program SPSS versi 12.
3.7 Variabel Penelitian

3.7.1 Variabel Independen (Variabel bebas) :

Heat stress : dengan sub variabel berupa faktor pekerjaan, dan faktor pekerja.

3.7.2 Variabel Dependen (Variabel terikat) :

Kristalisasi Urin.

3.8 Kerangka Konsep

Gambar 3.1 : Kerangka konsep penelitian.

3.9 Defenisi Operasional

3.9.1 Heat stress :

Tekanan panas atau heat stress adalah batasan kemampuan penerimaan panas yang diterima pekerja dari kontribusi kombinasi metabolisme tubuh akibat melakukan pekerjaan dan faktor lingkungan (seperti temperatur udara, kelembaban, pergerakan udara, dan radiasi perpindahan...
Pengukuran heat stress dilakukan dengan alat QuestTemp 36 Area Heat Stress Monitor dengan perolehan hasil parameter ISBB (Indeks Suhu Basah dan Bola).

3.9.2 Faktor Pekerjaan yang mempengaruhi keadaan heat stress

Adapun faktor pekerjaan yang mempengaruhi heat stress adalah:

- Masa kerja: waktu sejak seseorang mulai bekerja pada tempat yang sama diukur dalam satuan tahun.
 Skala ukur ordinal, dengan kategori 0: ≤ 11 tahun dan 1: ≥ 12 tahun.
- Lama terpapar: lamanya seseorang terpapar dengan heat stress dalam sehari selama ia bekerja dalam satuan jam.
 Skala ukur ordinal, dengan kategori 0: ≤ 8 jam dan 1: > 8 jam.
- Jenis pekerjaan: unit kerja masing-masing pekerja.
 Skala ukur nominal, terbagi atas 1: binatu dan 0: dapur.

3.9.3 Faktor Pekerja yang mempengaruhi keadaan heat stress

Sedang faktor pekerja yang mempengaruhi heat stress adalah:

- Umur: waktu yang dihitung sejak lahir sampai wawancara dilakukan dalam satuan tahun.
 Skala ukur ordinal, dengan kategori 0: ≤ 40 tahun, 1: > 40 tahun.
- Ukuran tubuh: diukur melalui indeks massa tubuh (IMT) berdasarkan nilai berat badan (kg) dan tinggi badan (m) seseorang dengan rumus:
 \[\text{IMT} = \frac{\text{Berat Badan (kg)}}{\text{Tinggi Badan (m)}^2} \]
IMT ideal perempuan = 19 – 24 ; IMT ideal laki-laki = 20 – 25.

Diperoleh hasil perhitungan dengan kategori kurus, normal, dan gemuk.

Skala ukur ordinal, kategori 0 : kurus, 1 : normal, dan 2 : gemuk.

- Kebiasaan minum : volume air minum yang dikonsumsi pekerja selama sehari semalaman dalam ukuran liter.(1 botol = 1 liter) Pekerja di lingkungan kerja yang panas minum sebanyak > 3 liter per hari. Skala ukur ordinal, dengan kategori baik 0 : > 3 liter/hari dan tidak baik 1 : ≤3 liter/hari.

- Aklimatisasi terhadap panas menyangkut serangkaian kompensasi yang terjadi pada individu yang membantu penyelamatan diri atas perubahan lingkungan. (ACGHI,2001)

Pengukuran tingkat aklimatisasi dilakukan dengan mengukur suhu tubuh axilla dengan thermometer dalam derajat Celcius (normal : 36⁰ – 37,5 ⁰C), tekanan darah adalah suatu kekuatan darah yang menekan dinding pembuluh darah diukur dalam satuan mmHg dengan alat ukur tensi meter (normal : sistole 90-140 mmHg, diastole 60-90 mmHg) , dan denyut nadi dalam satuan per menit pekerja sebelum dan sesudah kerja (normal : 60-100 kali/menit).

Skala ukur ordinal, kategori 0 : baik, kategori 1 : tidak baik.
3.9.4 Kristalisasi Urin:

Kristalisasi Urin adalah komponen kristal yang ditemui pada urin sewaktu dalam pemeriksaan di laboratorium dengan proses sedimentasi. Juga ditetapkan jenis kristalisasi urin yang terjadi, seperti kristalisasi kalsium oksalat, asam urat, kalsium phospat, dan amorf phospat.

Skala ukur ordinal, dengan kategori 0 : Negatif dan 1 : Positif.

3.10 Jadwal Pelaksanaan

Tabel 3.1: Jadwal Pelaksanaan.

<table>
<thead>
<tr>
<th>No</th>
<th>Kegiatan</th>
<th>Bulan Pelaksanaan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Feb</td>
</tr>
<tr>
<td>1</td>
<td>Penelusuran Pustaka</td>
<td>√</td>
</tr>
<tr>
<td>2</td>
<td>Studi Pendahuluan</td>
<td>√</td>
</tr>
<tr>
<td>3</td>
<td>Konsultasi Judul dengan Ketua Program</td>
<td>√</td>
</tr>
<tr>
<td>4</td>
<td>Konsultasi Pembimbing</td>
<td>√</td>
</tr>
<tr>
<td>5</td>
<td>Pengurusan Administrasi Penelitian</td>
<td>√</td>
</tr>
<tr>
<td>6</td>
<td>Persiapan bahan Kolokium</td>
<td>√</td>
</tr>
<tr>
<td>7</td>
<td>Kolokium</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Persiapan alat dan bahan</td>
<td>√</td>
</tr>
<tr>
<td>9</td>
<td>Pengumpulan Data</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Pengolahan dan Analisa Data</td>
<td>√</td>
</tr>
<tr>
<td>11</td>
<td>Penyusunan Laporan Tesis</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Seminar Hasil/ Sidang Meja Hijau</td>
<td></td>
</tr>
</tbody>
</table>
BAB 4

HASIL PENELITIAN

4.1 Hasil

4.1.1 Gambaran Umum Lokasi Penelitian

Hotel yang bernama X merupakan perusahaan milik keluarga yang telah berdiri sejak tahun 1978, merupakan hotel berbintang tiga dengan kapasitas kamar sebanyak 147, memiliki 7 ruang pertemuan berkapasitas 2000 orang, berlokasi di pusat kota sehingga tamu yang datang hampir seluruhnya dengan tujuan bisnis. Ruang pertemuan hampir setiap hari memiliki occupancy yang cukup tinggi, sehingga kegiatan operasional di dapur maupun binatu tergolong sibuk terutama di siang hari. Jumlah pegawai di Hotel ini sebanyak 200 orang yang terbagi atas 3 shift. Unit dapur pada umumnya pekerja bekerja pada pagi dan siang hari, pekerja shift malam hanya dibutuhkan 4 orang setiap harinya. Sedang unit binatu bekerja hanya 1 shift setiap harinya. Lingkungan kerja yang panas di dapur dan binatu telah diupayakan dengan engineering control berupa pemasangan exhaust fan maupun ventilator, serta pemasangan insulator untuk mengurangi pancaran radiasi panas dari sumber panas yang ada.

4.1.2 Analisis Univariat

Analisis univariat dimaksudkan untuk mendeskripsikan masing-masing variabel bebas dan variabel terikat dengan menggunakan tabel distribusi frekuensi.
4.1.2.1 Lokasi Tempat Kerja Responden

Tabel 4.1 Distribusi Frekuensi Lokasi Tempat Kerja Responden yang Bekerja pada Hotel X di Medan.

<table>
<thead>
<tr>
<th>No</th>
<th>Lokasi Tempat Kerja</th>
<th>Jumlah (orang)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Binatu</td>
<td>13</td>
<td>31,7</td>
</tr>
<tr>
<td>2.</td>
<td>Dapur</td>
<td>28</td>
<td>68,3</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>41</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Pada tabel 4.1 diketahui bahwa responden terbanyak dengan lokasi tempat kerja di dapur yaitu sebanyak 28 orang (68,3%), dan yang paling sedikit bertempat kerja di binatu yaitu sebanyak 13 orang (31,7%).

4.1.2.2 Masa Kerja Responden

Tabel 4.2 Distribusi Frekuensi Masa Kerja Responden yang Bekerja pada Binatu dan Dapur Hotel X di Medan.

<table>
<thead>
<tr>
<th>No</th>
<th>Masa Kerja</th>
<th>Jumlah (orang)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>3 - 11 Tahun</td>
<td>23</td>
<td>56,1</td>
</tr>
<tr>
<td>2.</td>
<td>≥ 12 Tahun</td>
<td>18</td>
<td>43,9</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>41</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Berdasarkan tabel 4.2 diketahui bahwa masa kerja responden terbanyak adalah 3-11 tahun yaitu sebanyak 23 orang (56,1%), dan yang paling sedikit dengan masa kerja ≥ 12 tahun yaitu sebanyak 18 orang (43,9%).
4.1.2.3 Lama Terpapar Responden

Tabel 4.3 Distribusi Frekuensi Lama terpapar Responden yang Bekerja pada Binatu dan Dapur Hotel X di Medan.

<table>
<thead>
<tr>
<th>No</th>
<th>Lama Terpapar</th>
<th>Jumlah (orang)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>7-8 jam/ hari</td>
<td>39</td>
<td>95,1</td>
</tr>
<tr>
<td>2.</td>
<td>> 8 jam/ hari</td>
<td>2</td>
<td>4,1</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>41</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Berdasarkan tabel 4.3 diketahui bahwa lama terpapar responden terbanyak adalah 7-8 jam/ hari yaitu sebanyak 39 orang (95,1%), dan yang paling sedikit dengan lama terpapar > 8 jam/ hari yaitu sebanyak 2 orang (4,1%).

4.1.2.4 Umur Responden

Tabel 4.4 Distribusi Frekuensi Umur Responden yang Bekerja pada Hotel X di Medan.

<table>
<thead>
<tr>
<th>No</th>
<th>Umur</th>
<th>Jumlah (orang)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>≤ 40 tahun</td>
<td>24</td>
<td>58,5</td>
</tr>
<tr>
<td>2.</td>
<td>> 40 tahun</td>
<td>17</td>
<td>41,5</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>41</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Berdasarkan tabel 4.4 diketahui bahwa umur responden terbanyak adalah ≤ 40 tahun yaitu sebanyak 24 orang (58,5%), dan yang paling sedikit dengan umur > 40 tahun yaitu sebanyak 17 orang (41,5%).
4.1.2.5 Jenis Kelamin Responden

Tabel 4.5 Distribusi Frekuensi Jenis Kelamin Responden yang bekerja pada Hotel X di Medan.

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Kelamin</th>
<th>Jumlah (orang)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Laki-laki</td>
<td>31</td>
<td>75,6</td>
</tr>
<tr>
<td>2.</td>
<td>Perempuan</td>
<td>10</td>
<td>24,4</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>41</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Berdasarkan tabel 4.5 diketahui bahwa jenis kelamin responden yang terbanyak adalah laki-laki yaitu sebanyak 31 orang (75,6%), dan yang paling sedikit dengan jenis kelamin perempuan yaitu sebanyak 10 orang (24,4%).

4.1.2.6 Pendidikan Responden

Tabel 4.6 Distribusi Frekuensi Pendidikan Responden yang bekerja pada Hotel X di Medan.

<table>
<thead>
<tr>
<th>No</th>
<th>Pendidikan</th>
<th>Jumlah (orang)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>SD</td>
<td>3</td>
<td>7,3</td>
</tr>
<tr>
<td>2.</td>
<td>SLTP</td>
<td>8</td>
<td>19,5</td>
</tr>
<tr>
<td>3.</td>
<td>SLTA</td>
<td>27</td>
<td>65,9</td>
</tr>
<tr>
<td>4.</td>
<td>D3</td>
<td>2</td>
<td>4,9</td>
</tr>
<tr>
<td>5.</td>
<td>S1</td>
<td>1</td>
<td>2,4</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>41</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Berdasarkan tabel 4.6 diketahui bahwa pendidikan responden yang terbanyak adalah SLTA yaitu sebanyak 27 orang (65,9%), dan yang paling sedikit berpendidikan S1 yaitu 1 orang (2,4%).
4.1.2.7 Ukuran Tubuh Responden

Tabel 4.7 Distribusi Frekuensi Ukuran Tubuh Responden yang bekerja pada Hotel X di Medan.

<table>
<thead>
<tr>
<th>No</th>
<th>Ukuran Tubuh</th>
<th>Jumlah (orang)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Kurus</td>
<td>21</td>
<td>51,2</td>
</tr>
<tr>
<td>2.</td>
<td>Normal</td>
<td>8</td>
<td>19,5</td>
</tr>
<tr>
<td>3.</td>
<td>Gemuk</td>
<td>12</td>
<td>29,3</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>41</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Berdasarkan tabel 4.7 diketahui bahwa ukuran tubuh responden yang terbanyak adalah dengan kategori kurus yaitu sebanyak 21 orang (51,2%), dan yang paling sedikit dengan kategori normal yaitu 8 orang (19,5%).

4.1.2.8 Kebiasaan Minum Responden

Tabel 4.8 Distribusi Frekuensi Volume Minum Responden yang bekerja pada Hotel X di Medan.

<table>
<thead>
<tr>
<th>No</th>
<th>Kebiasaan Minum</th>
<th>Jumlah (orang)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Tidak Baik (≤3liter/hari)</td>
<td>11</td>
<td>26,8</td>
</tr>
<tr>
<td>2.</td>
<td>Baik (>3 liter/hari)</td>
<td>30</td>
<td>73,2</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>41</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Berdasarkan tabel 4.8 diketahui bahwa volume minum responden yang terbanyak adalah dengan kategori baik (> 3 liter/hari) yaitu sebanyak 30 orang (73,2%), dan yang paling sedikit dengan kategori tidak baik (≤ 3 liter/hari) yaitu 11 orang (26,8%).
4.1.2.9 Aklimatisasi Responden

Berdasarkan pengukuran yang dilakukan atas tekanan darah, denyut nadi, dan temperatur tubuh responden sebelum dan sesudah kerja seluruhnya tidak terdapat perubahan yang besar dan masih dalam kategori normal yaitu sebanyak 41 orang (100%).

4.1.2.10 Kristalisasi Urin Responden

<table>
<thead>
<tr>
<th>No</th>
<th>Kristalisasi Urin</th>
<th>Jumlah (orang)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Negatif</td>
<td>29</td>
<td>70,7</td>
</tr>
<tr>
<td>2.</td>
<td>Positif</td>
<td>12</td>
<td>29,3</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>41</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Berdasarkan tabel 4.9 diketahui bahwa responden yang terbanyak adalah tidak mengalami kristalisasi urin yaitu sebanyak 29 orang (70,7%), dan yang mengalami kristalisasi urin yaitu sebanyak 12 orang (29,3%).

4.1.3 Analisis Bivariat

Analisis bivariat dimaksudkan untuk melihat hubungan masing-masing variabel bebas terhadap variabel terikat dengan menggunakan uji Chi-Square dengan tingkat kepercayaan 95%.
4.1.3.1 Hubungan Masa Kerja dengan terjadinya Kristalisasi Urin Responden Hotel X di Medan.

Tabel 4.10 Hubungan Masa Kerja dengan terjadinya Kristalisasi Urin Responden Hotel X di Medan.

<table>
<thead>
<tr>
<th>No</th>
<th>Masa Kerja</th>
<th>Kristalisasi Urin</th>
<th>Total</th>
<th>χ^2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Negatif (-)</td>
<td>Positif (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>1.</td>
<td>3 – 11 tahun</td>
<td>17</td>
<td>41,5</td>
<td>6</td>
<td>14,6</td>
</tr>
<tr>
<td>2.</td>
<td>\geq 12 tahun</td>
<td>12</td>
<td>29,3</td>
<td>6</td>
<td>14,6</td>
</tr>
<tr>
<td>Jumlah</td>
<td>29</td>
<td>70,8</td>
<td>12</td>
<td>29,2</td>
<td>41</td>
</tr>
</tbody>
</table>

Berdasarkan tabel 4.10 diketahui bahwa responden yang mengalami kristalisasi urin sebanyak 6 orang (14,6%) dengan masa kerja 3-11 tahun dan 6 orang (14,6%) dengan masa kerja \geq 12 tahun, sedangkan yang tidak mengalami kristalisasi urin sebanyak 17 orang (41,5%) dengan masa kerja 3-11 tahun dan 12 orang (29,3%) dengan masa kerja \geq12 tahun.

Hasil uji statistik menunjukkan tidak terdapat hubungan yang bermakna antara masa kerja responden dengan terjadinya kristalisasi urin. ($p = 0,613$)
4.1.3.2 Hubungan Lama Terpapar dengan terjadinya Kristalisasi Urin Responden

Tabel 4.11 Hubungan Lama Terpapar dengan terjadinya Kristalisasi Urin Responden Hotel X di Medan.

<table>
<thead>
<tr>
<th>No</th>
<th>Lama Terpapar</th>
<th>Kristalisasi Urin</th>
<th>Total</th>
<th>χ^2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Negatif (-)</td>
<td>Positif (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>1.</td>
<td>7-8 Jam</td>
<td>28</td>
<td>68,3</td>
<td>11</td>
<td>26,8</td>
</tr>
<tr>
<td>2.</td>
<td>> 8 Jam</td>
<td>1</td>
<td>2,4</td>
<td>1</td>
<td>2,4</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>29</td>
<td>70,7</td>
<td>12</td>
<td>29,2</td>
</tr>
</tbody>
</table>

Berdasarkan tabel 4.11 diketahui bahwa responden yang mengalami kristalisasi urin sebanyak 11 orang (26,8%) dengan masa kerja \leq 8 jam/hari dan 1 orang (2,4%) dengan masa kerja $>$ 8 jam/hari sedangkan yang tidak mengalami kristalisasi urin sebanyak 28 orang (68,3%) dengan lama terpapar \leq 8 jam/hari dan 1 orang (2,4%) dengan lama terpapar $>$ 8 jam/hari.

Hasil uji statistik menunjukkan tidak terdapat hubungan yang bermakna antara lama terpapar responden dengan terjadinya kristalisasi urin. ($p=0,505$)
4.1.3.3 Hubungan Jenis Pekerjaan dengan terjadinya Kristalisasi Urin Responden.

Tabel 4.12 Hubungan Jenis Pekerjaan Responden dengan terjadinya Kristalisasi Urin Hotel X di Medan.

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Pekerjaan</th>
<th>Kristalisasi Urin</th>
<th>Total</th>
<th>χ^2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Negatif (-)</td>
<td>Positif (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>1.</td>
<td>Binatu</td>
<td>9</td>
<td>22,0</td>
<td>4</td>
<td>9,8</td>
</tr>
<tr>
<td>2.</td>
<td>Dapur</td>
<td>20</td>
<td>48,8</td>
<td>8</td>
<td>19,4</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>29</td>
<td>70,8</td>
<td>12</td>
<td>29,2</td>
</tr>
</tbody>
</table>

Berdasarkan tabel 4.12 diketahui bahwa responden yang mengalami kristalisasi urin sebanyak 4 orang (9,8%) di lokasi tempat kerja binatu dan 8 orang (19,5%) dilokasi tempat kerja dapur, sedangkan yang tidak mengalami kristalisasi urin sebanyak 9 orang (22,0%) di lokasi tempat kerja binatu dan 20 orang (48,8%) di lokasi tempat kerja dapur.

Hasil uji statistik menunjukkan bahwa tidak ada hubungan yang bermakna antara jenis pekerjaan responden dengan terjadinya kristalisasi urin. ($p= 0,886$)
4.1.3.4 Hubungan Umur dengan terjadinya Kristalisasi Urin Responden.

Tabel 4.13 Hubungan Umur dengan terjadinya Kristalisasi Urin Responden Hotel X di Medan.

<table>
<thead>
<tr>
<th>No</th>
<th>Umur</th>
<th>Kristalisasi Urin</th>
<th>Total</th>
<th>χ^2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Negatif (-)</td>
<td>Positif (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>1</td>
<td>≤ 40 tahun</td>
<td>18</td>
<td>43,9</td>
<td>6</td>
<td>14,6</td>
</tr>
<tr>
<td>2</td>
<td>> 40 tahun</td>
<td>11</td>
<td>26,9</td>
<td>6</td>
<td>14,6</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>29</td>
<td>70,7</td>
<td>12</td>
<td>29,3</td>
</tr>
</tbody>
</table>

Berdasarkan tabel 4.13 diketahui bahwa responden yang mengalami kristalisasi urin sebanyak 6 orang (14,6 %) dengan umur ≤ 40 tahun, 6 orang (14,6 %) dengan umur > 40 tahun, sedangkan yang tidak mengalami kristalisasi urin sebanyak 18 orang (43,9 %) dengan umur ≤ 40 tahun dan 11 orang (26,9 %) dengan umur > 40 tahun.

Hasil uji statistik menunjukkan tidak terdapat hubungan yang bermakna antara umur responden dengan terjadinya kristalisasi urin. (p=0,475)
4.1.3.5. Hubungan Ukuran Tubuh dengan terjadinya Kristalisasi Urin Responden.

Tabel 4.14 Hubungan Ukuran Tubuh dengan terjadinya Kristalisasi Urin Responden Hotel X di Medan.

<table>
<thead>
<tr>
<th>No</th>
<th>Ukuran Tubuh</th>
<th>Kristalisasi Urin</th>
<th>Total</th>
<th>χ^2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Negatif (-)</td>
<td>Positif (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>1.</td>
<td>Kurus</td>
<td>14</td>
<td>34,1</td>
<td>7</td>
<td>17,1</td>
</tr>
<tr>
<td>2.</td>
<td>Normal</td>
<td>6</td>
<td>14,6</td>
<td>2</td>
<td>4,9</td>
</tr>
<tr>
<td>3.</td>
<td>Gemuk</td>
<td>9</td>
<td>22,0</td>
<td>3</td>
<td>7,3</td>
</tr>
<tr>
<td>Jumlah</td>
<td></td>
<td>29</td>
<td>70,0</td>
<td>12</td>
<td>29,3</td>
</tr>
</tbody>
</table>

Berdasarkan tabel 4.14 diketahui bahwa responden yang mengalami kristalisasi urin sebanyak 7 orang (17,1 %) dengan ukuran tubuh kurus, 2 orang (4,9 %) dengan ukuran tubuh normal dan 3 orang (7,3 %) dengan ukuran tubuh gemuk, sedangkan yang tidak mengalami kristalisasi urin sebanyak 14 orang (34,1 %) dengan ukuran tubuh kurus, 6 orang (14,6 %) dengan ukuran tubuh normal dan 9 orang (22,0 %) dengan ukuran tubuh gemuk.

Hasil uji statistik menunjukkan tidak terdapat hubungan yang bermakna antara ukuran tubuh responden dengan terjadinya kristalisasi urin. (p=0,842)
4.1.3.6. Hubungan Kebiasaan Minum dengan terjadinya Kristalisasi Urin Responden.

Tabel 4.15 Hubungan Kebiasaan Minum dengan terjadinya Kristalisasi Urin Responden Hotel X di Medan.

<table>
<thead>
<tr>
<th>No</th>
<th>Kebiasaan Minum</th>
<th>Kristalisasi Urin</th>
<th>Total</th>
<th>χ²</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Negatif (-)</td>
<td>Positif (+)</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>1.</td>
<td>Baik : >3 liter/hari</td>
<td>25</td>
<td>61,0</td>
<td>5</td>
<td>12,2</td>
</tr>
<tr>
<td></td>
<td>Tidak Baik : ≤3 liter/hari</td>
<td>4</td>
<td>9,8</td>
<td>7</td>
<td>17,1</td>
</tr>
<tr>
<td></td>
<td>Jumlah</td>
<td>29</td>
<td>70,7</td>
<td>12</td>
<td>29,3</td>
</tr>
</tbody>
</table>

Berdasarkan tabel 4.15 diketahui bahwa responden yang mengalami kristalisasi urin sebanyak 7 orang (17,1%) dengan kebiasaan minum tidak baik ≤ 3 liter/hari dan 5 orang (12,2%) dengan kebiasaan minum baik > 3 liter/hari, sedangkan yang tidak mengalami kristalisasi urin sebanyak 4 orang (9,8%) dengan kebiasaan minum tidak baik ≤ 3 liter/hari dan 25 orang (61,0%) dengan kebiasaan minum baik > 3 liter/hari.

Hasil uji statistik menunjukkan terdapat hubungan yang bermakna antara kebiasaan minum responden dengan terjadinya kristalisasi urin. (p= 0,003)
4.1.3.7. Hubungan Aklimatisasi dengan terjadinya Kristalisasi Urin Responden.

Berdasarkan hasil pengukuran terhadap tekanan darah, denyut nadi, dan temperatur tubuh responden sebelum dan sesudah kerja seluruhnya tidak terdapat perubahan yang besar dan masih dalam kategori normal yaitu sebanyak 41 orang. Sehingga dapat dikatakan bahwa seluruh responden mempunyai aklimatisasi baik (100%), terdapat 12 orang (29,3%) responden yang mengalami kristalisasi urin dan 29 orang (70,7%) tidak mengalami kristalisasi urin.

4.2. Pembahasan

Dari hasil penelitian ini ternyata 12 orang dari 41 pekerja (29,3%) mengalami kristalisasi urin, berarti prevalensi kristalisasi urin pada penelitian ini adalah 29,3%. Angka ini lebih rendah dari hasil penelitian Soemarko (45,2%) kristalisasi urin, yang dimungkinkan karena populasi penelitian ini lebih kecil.

saluran kemih pada pekerja di pabrik pembuatan kaca bersuhu ISBB 29-31\(^0\)C diperoleh hasil prevalensi nephrolithiasis sebesar 8,5% (20 dari 236 orang). Juga dalam penelitian Atan et al (2005) yang mempelajari insiden urinary Lithiasis pada pekerja di industri besi yang terpapar panas memperoleh hasil 1,75% telah mengalami urinary stones. Dalam penelitiannya ia mengambil kesimpulan pekerja yang terpapar panas 9 kali lebih berisiko untuk menderita Lithiasis.

4.2.1. Faktor Pekerjaan

Hasil analisis berdasarkan variabel faktor pekerjaan berupa masa kerja dengan uji statistik Chi-Square, diperoleh nilai \(p = 0,613 (> 0,05)\) artinya tidak ada hubungan yang bermakna secara statistik antara masa kerja responden dengan terjadinya kristalisasi urin. Dapat dilihat bahwa pekerja yang bekerja di lingkungan panas selama lebih dari 3 tahun dalam kondisi kurangnya asupan cairan telah mengalami gejala terjadinya risiko gangguan kesehatan khususnya dalam terjadinya kristalisasi urin.

Hasil uji statistik menunjukkan tidak terdapat hubungan yang bermakna antara lama terpapar responden dengan terjadinya kristalisasi urin. \(p= 0,505\). Hal ini mungkin karena hampir seluruh pekerja bekerja selama \(\leq 8\) jam/hari dan hanya 2 orang pekerja yang bekerja melampaui \(8\) jam/hari.

Hasil uji statistik pada variabel jenis pekerjaan menunjukkan tidak ada hubungan yang bermakna antara jenis pekerjaan responden di binatu dan dapur dengan terjadinya kristalisasi urin \(p= 0,886\). Hal ini disebabkan karena baik binatu maupun dapur sama-sama merupakan lingkungan kerja yang panas yakni
berhubungan dengan sumber-sumber panas yang ada berupa mesin-mesin binatu seperti *flat ironer* maupun mesin pengereng yang mengeluarkan panas, juga pada dapur panas yang bersumber dari api kompor maupun *oven*. Pada kedua tempat kerja ini juga tidak terlihat perbedaan yang besar atas pengukuran temperatur berdasarkan ISBB (hanya berbeda sekitar 1°C).

4.2.2 Faktor Pekerja

Dari hasil uji statistik pada variabel umur pekerja menunjukkan tidak terdapat hubungan yang bermakna antara umur responden dengan terjadinya kristalisasi urin (p= 0,475). Hal ini tidak sejalan dengan penelitian Soemarko (2002) yang mengatakan bahwa pekerja berumur lebih dari 40 tahun memiliki risiko yang lebih tinggi untuk terjadinya kristalisasi urin akibat kemampuan beradaptasi dengan lingkungan panas yang sudah mulai melambat.

Hasil uji statistik pada variabel ukuran tubuh menunjukkan tidak terdapat hubungan yang bermakna antara ukuran tubuh responden dengan terjadinya kristalisasi urin (p= 0,842). Hal ini disebabkan ukuran tubuh responden yang termasuk kategori kurus masih dalam kekurangan berat badan tingkat ringan, demikian juga dengan responden yang termasuk kategori gemuk masih dalam kelebihan berat badan tingkat ringan, sehingga kondisi kesehatan responden secara umum dalam keadaan yang normal.

Hasil uji statistik pada variabel kebiasaan minum menunjukkan terdapat hubungan yang bermakna antara kebiasaan minum responden dengan terjadinya kristalisasi urin (p= 0,003). Hal ini sesuai dengan penelitian Borghi *et al* (1999) yang
mengatakan peningkatan volume urin terjadi yang terjadi karena asupan cairan yang banyak memberikan pengaruh yang menguntungkan untuk mencegah terjadinya kristalisasi kalsium oksalat pada urin. Ia juga menyimpulkan bahwa asupan cairan yang banyak terutama air putih merupakan pencegahan yang paling kuat dan juga paling ekonomis terhadap terjadinya nephrolithiasis. Dalam tulisannya ia menyatakan beberapa pengarang mengatakan index probabilitas atas terbentuknya batu kalsium oksalat apabila dimasukkan ke subjek normal, menunjukkan bahwa walaupun subjek yang tidak memiliki batu akan menjadi seorang dengan risiko tinggi apabila volume urinnya turun hingga 1 liter/hari.

Semua responden memiliki aklimatisasi terhadap panas yang baik, sehingga dapat dinyatakan bahwa seluruh pekerja memiliki kondisi fisik yang baik, dilihat dari tekanan darah, temperatur, dan denyut jantung sebelum dan sesudah bekerja yang tidak banyak berbeda, sehingga keseluruhannya masuk dalam nilai normal. Hal ini mungkin karena pekerja dalam melakukan pekerjaannya tidak dalam posisi statis melainkan membutuhkan gerakan fisik seperti mengangkat, berjalan, melipat kain, dll sehingga gerakan yang dilakukan dapat membuat pekerja fit.

Walaupun secara statistik hanya faktor pekerja berupa kebiasaan minum yang bermakna, namun adanya kristalisasi urin pada beberapa pekerja perlu mendapat perhatian khusus berupa peningkatan penerapan program kesehatan kerja guna mengurangi risiko terjadinya penyakit akibat kerja berupa batu saluran kemih. Seperti pendapat Borghi (1999) yang mengatakan pemasukan cairan yang tinggi adalah merupakan pencegahan yang dilakukan para klinisi dalam penyembuhan kasus batu.
BAB 5
KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil dan pembahasan, maka dapat diambil beberapa kesimpulan sebagai berikut:

a. Prevalensi kristalisasi urin pada pekerja di unit binatu dan dapur hotel X Medan adalah 29,3%.

b. Jenis kristalisasi urin yang terjadi pada 12 orang pekerja di unit binatu dan dapur hotel X adalah kristalisasi urin kalsium oksalat sebanyak 10 orang, kristalisasi asam urat sebanyak 2 orang, dan kristalisasi amorf phosphat sebanyak 1 orang. Juga didapatkan 1 orang pekerja mengalami kristalisasi lebih dari satu macam yaitu kalsium oksalat dan asam urat.

c. Faktor yang berhubungan dengan terjadinya kristalisasi urin adalah faktor pekerja berupa kebiasaan minum yaitu volume asupan air minum pekerja sehari-hari, dalam penelitian ini pekerja yang minum sebanyak > 3 liter/hari secara umum terbebas dari keadaan kristalisasi urin.

5.2 Saran

Berdasarkan kesimpulan penelitian ini, maka diharapkan kepada pihak manajemen hotel agar lebih meningkatkan lagi penerapan program kesehatan kerja sebagai berikut:
a. Agar lebih memperhatikan kedisiplinan pekerja dalam mengkonsumsi air minum pada waktu bekerja dengan mengingatkan pekerja untuk minum segelas air (250 cc) setiap 30 menit bekerja, dan menyarankan kepada pekerja untuk mengkonsumsi air minum sedikitnya 4-10 liter sehari semalam.

b. Agar menyediakan fasilitas air minum yang mudah dijangkau pekerja dalam jumlah yang cukup dengan tetap memperhatikan penggunaan gelas secara individual.
DAFTAR PUSTAKA

ACGIH (American Conference of Governmental Industrial Hygienists), Heat stress and Strain, USA, 2001, diakses 5 Februari 2007.

Lampiran 1

Judul Penelitian:
Hubungan faktor-faktor *Heat stress* dengan terjadinya Kristalisasi Urin pada pekerja Binatu dan Dapur Hotel X

Petunjuk pengisian kuesioner
1. Mohon kuesioner ini diisi oleh bapak/ibu/sdr untuk menjawab seluruh pertanyaan yang ada guna untuk memperlancar penelitian.
2. Pada halaman berikut anda cukup memberikan tanda check list (√) pada kolom lembar yang tersedia.

Setiap jawaban yang diberikan merupakan bantuan yang tidak ternilai harganya bagi penelitian ini, atas perhatian dan bantuannya saya mengucapkan terima kasih.

I. Identitas Lokasi
1. Tempat Kerja: ..
2. Alamat: ..

II. Identitas Responden
1. Nama: ..
2. Umur: ..
3. Jenis Kelamin: Laki-laki / Perempuan
4. Jabatan: ..
5. Bagian Pekerjaan: Binatu / Dapur, bagian/unit:

6. Tahun Bekerja: .. (Tahun)
7. Waktu Bekerja: .. Jam/ hari
8. Tempat Kerja yang lalu: ..
9. Pendidikan (Tamat): ..
10. Berat Badan: .. (Kg)
11. Tinggi Badan: .. (Cm)
12. Status Gizi (diisi oleh peneliti):
III. Waktu Wawancara

1. Tanggal/ Hari wawancara : ..
2. Jam Mulai wawancara : ..
3. Jam Selesai wawancara : ...

IV. Variabel Faktor Pekerjaan :

1. Berapa lama anda bekerja pada unit kerja yang sama ? :
 a) 3 tahun
 b) 3 tahun s/d 5 tahun
 c) 5 tahun s/d 10 tahun
 d) 10 tahun keatas.

2. Berapa jam anda bekerja di tempat panas dalam satu hari ? :
 a) 4 - 6 Jam / hari.
 b) 6 - 7 Jam / hari.
 c) 8 Jam / hari atau 40 jam / minggu.
 d) > 8 Jam / hari.

V. Variabel Eksklusi :

4. Apakah anda pernah mengalami penyakit batu saluran kemih ? :
 a). Tidak
 b). Pernah

5. Apakah anda mengalami penyakit kencing manis ? :
 a) Tidak
 b) Pernah

6. Apakah anda sedang menderita penyakit asam urat ? :
 a) Tidak
 b) Pernah

7. Apakah anda saat ini sedang makan obat-obatan seperti penurun tekanan darah jenis Thyazide atau obat anti sakit maagh ? :
 a) Tidak
 b) Ya
VI. Variabel faktor pekerja:

7. Berapa banyak anda minum air putih sehari semalam?:
 a) Satu botol (1 liter).
 b) Dua botol.
 c) Tiga botol.
 d) Lebih dari tiga botol.

8. Bagaimana kebiasaan minum anda selama bekerja?:
 a) Hanya sekali-sekali minum.
 b) Minum satu gelas setiap 2 jam.
 c) Minum satu gelas setiap 1 jam.
 d) Minum satu gelas setiap 20-30 menit.

9. Apakah anda peminum susu atau kopi secara rutin?: (coret yang tidak)
 a) Ya
 b) Tidak

10. Jika jawaban no 9 b, berapa banyak anda meminumnya sehari?
 a) 1 gelas.
 b) 2 gelas.
 c) 3 gelas.
 d) Lebih dari 3 gelas.

Medan,2007
Tanda Tangan Responden:

(..)