JURNAL
TEKNIK KIMIA - USU

Departemen Teknik Kimia
Fakultas Teknik
Universitas Sumatera Utara
Pengaruh Penggunaan Larutan Alkali dalam Kekuatan Bentuk dan Uji Degradasi pada Komposit Termoplastik Berpengisi Serbuk Serat Kelapa
Harry Abrindo S, Johannes Leonard S, Maulida

Pengaruh Pembanahan Alkanolanida Terhadap Karakteristik Penutupan dan Kekerasan Vulkanisat Karet Alam Berpengisi Silika
Harry Lukman Tampubolon, Darwis Syarifuddin Hutapea, Indra Surya

Pengaruh Biodegradasi dengan Teknik Penanaman Terhadap Produk Lateks Karet Alam Berpengisi Tepung Kelapa yang Dipupuk dengan Hidrogen Peroksida
Erick Kanll, Emelya Khoenoema, Hamidah Harahap

Pengaruh Pencacahan Alami Terhadap Produk Lateks Karet Alam Berpengisi Tepung Kelapa yang Dipupuk dengan Hidrogen Peroksida
Emelya Khoenoema, Erick Kanll, Hamidah Harahap

Ekstrak Pektin dari Kulit Buah Pisang Raja (Musa sapientum)
Fadila Hanum, Izza Menka Devi Shany Kaban, Martha Angelina Taringan

Pengolahan Limbah Cair Kelapa Sawit Secara Aerobik Menggunakan Effective Microorganism Guna Mengurangi Nilai TSS
Irwan, Hambang Tirakati, Michael Vincent, Yohannes Tandean

Penentuan Efisiensi Inhibisi Korosi Baja Menggunakan Ekstrak Kulit Buah Kakao (Theobroma cacao)
Sri Hermawan, Yuli Risky Amanda Nauli, Roudanelli Hasibuan

Kemampuan Adsorben Limbah Lateks Karet Alam Terhadap Minyak Pelumas Dalam Air
Edward Tandy, Ismail Fahnii Hasibuan, Hamidah Harahap

Penanaman Limbah Lateks Karet Alam dengan Pengisi Buluk Pelepah Pisang sebagai Adsorben Minyak
Ismail Fahnii Hasibuan, Edward Tandy, Hamidah Harahap

Penentuan Efisiensi Inhibisi Reaksi Korosi Baja Menggunakan Ekstrak Kulit Buah Manggis (Garcinia mangostana L)
Yuli Risky Amanda Nauli, Sri Hermawan, Roudanelli Hasibuan
PENGARUH PENGgunaAN LarUTAN ALKALI DALAM KEKUATAN BENTUR DAN UJI DEGRADASI PADA KOMPOSIT TERMOPLASTIK BERPENGISI SERBUK SERABUT KELAPA

Harry Abdulro S. Johannes Leonard S. Maulidin
Departemen Teknik Kimia, Fakultas Teknik, Universitas Sumatera Utara,
Jl. Almahamer Kampus USU. Medan 20155, Indonesia
email: harryabdros@student.Usu.ac.id

Abstrak

Metode yang digunakan dalam pembuatan komposi ini adalah metode ekstrusi. Matriks berupa polipropilena bebas dicampur dengan serbuk serabut kelapa yang telah diolegh dengan NaOH, kemudian dicampur di dalam sebuah wadah, kemudian dimasukkan ke dalam extruder dengan suhu operasi 175°C, dicetak menggunakan hot press pada suhu 175°C, dan diproses untuk pengujian. Hasil penelitian menunjukkan bahwa terjadi pengelupasan optimum dengan NaOH selama 2 hari. Hasil uji degradasi menunjukkan perilaku selama 2 hari memiliki nilai kekuatan bentur yang lebih tinggi dibandingkan 1 hari yaitu sebesar 0.068 J/mm pada 10 hari, 0.088 J/mm pada 20 hari dan 0.078 J/mm pada 30 hari.

Kata kunci: Komposi, polipropilena bebas, serabut kelapa, NaOH, uji degradasi

Abstract
Composite is a combination of two different materials to obtain a material with physical properties and mechanical properties. One of the many types of produced composite is composite with powdered natural fiber. This study uses the former polypropylene matrix derived from aqua cup and powdered coconut fiber as filler treated with Sodium Hydroxide (NaOH). The ratio of the matrix and the filler is 85:15. This ratio is the optimum value obtained by the composite tensile strength with some ratios are 100:05, 95:05, 90:10 and 85:15. The purpose of this study is to determine the effect of the use of an alkaline solution of the resulting composite properties such as impact strength, as well as the effect of degradation on composite material. The matrix type of the former polypropylene with powdered coconut fiber as filler. Variation of composite degradation test were 10, 20 and 30 days, and immersion periods for 1 and 2 days.

The method used in the manufacture of composites is the method of extrusion. The matrix type of the former polypropylene mixed with coconut fiber powder that has been soaked with NaOH, then mixed in a container, then put into the extruder operating temperature 175°C, printed using a hot press at a temperature of 175°C, and cut into pieces appropriate setting. The results showed that the optimum processing occurs with NaOH for 2 days. The test results showed degradation so that for 2 days has impact strength values higher than 1 day is equal to 0.068 J/mm at 10 days, 0.088 J/mm at 20 days and 0.078 J/mm at 30 days.

Keywords: Composite, former polypropylene, coconut fiber, NaOH, degradation test

Pendahuluan
Pada dekade terakhir ini perkembangan teknologi semakin pesat, terutama di bidang bahan teknik. Salah satu komposi di bidang bahan teknik adalah pemanfaatan bahan komposi untuk berbagai keperluan seperti alat transportasi baik transportasi darat, laut, dan udara. Komposi dengan berpengisi serat alam menjadi salah satu pilihan yang tepat. Serat alam lebih dipilih dibanding serat buatan, karena serat alam memiliki beberapa kelebihan diantaranya adalah kaku, murah, ringan, tidak bercak, tersedia dalam jumlah yang banyak, dan ramah lingkungan. [1][3]
Adapun salah satu jenis tanaman yang menghasilkan serat alam adalah kelapa dengan nama Latin *Cocos nucifera*. Selama ini serat kelapa hanya digunakan sebagai bahan dasar pembuatan karet, niat, dan lain-lain [14]. Hal yang menjadi pertimbangan penggunaan serat ini adalah penggunaan serat kelapa yang masih minim dan serat ini mudah diperoleh serta serat ini juga memiliki sifat yang kuat. Penelitian mengenai penggunaan serabut kelapa sebagai pengisi komposit termoplastik telah banyak dilakukan. Salah satu penelitian dilakukan oleh University of Delft, dimana komposit polipropilen berpengisi serabut kelapa menghasilkan *flexural strength* 29.49 MPa dan *flexural stiffness* 2.91-2.99 GPa [2].

Jenis termoplastik yang digunakan dalam penelitian ini adalah polipropilen (PP) bebas dan aqua-cup. Polipropilen (PP) adalah sebuah polimer termoplastik yang dibuat oleh industri kimia dan digunakan dalam berbagai aplikasi.

Penggunaan larutan alkali sebagai langkah perlakuan terhadap serat telah dilakukan. Salah satunya dilakukan oleh Kuncoro dimana polieter berpengisi serat rami diperlakukan dengan larutan alkali yaitu larutan natrium hidrosida (NaOH). Komposit yang dihasilkan memiliki tegangan taring 190 MPa dan modulus elastisitas 45.795 GPa [1]. Penelitian yang dilakukan oleh Kuncoro menyatakan perendaman serabut kelapa dalam larutan 5% NaOH selama 72 jam memberikan kekuatan taring terbaik [8]. Berbeda dengan Mohanty menyatakan perendaman dalam larutan 2% NaOH selama 1 jam memberikan kekuatan taring optimum [5].

Dikarenakan sifat dan karakteristiknya yang unik, kayu merupakan bahan yang paling banyak digunakan untuk peralatan konstruksi. Kebutuhan manusia akan kayu sebagai bahan bangunan baik untuk keperluan konstruksi, dekorasi, maupun furniture terus meningkat seiring dengan meningkatnya jumlah penduduk. Kebutuhan kayu untuk industri perayakan di Indonesia diperkirakan sebesar 70 juta m³ per tahun dengan kenaikan rata-rata sebesar 14.2 % per tahun sedangkan produksi kayu bulat diperkirakan hanya sebesar 25 juta m³ per tahun, dengan demikian terjadi defisit sebesar 45 juta m³ [6]. Kondisi ini menuntut penggunaan kayu secara efisien dan bijaksana, antara lain melalui konsep *the whole tree utilization*, dan pengembangan produk-produk inovatif sebagai bahan bangunan pengganti kayu. Di lain pihak, seiring dengan perkembangan teknologi, kebutuhan akan plastik terus meningkat. Sebagai konsekuensinya, peningkatan limbah plastik pun tidak terelakkan. Limbah plastik merupakan bahan yang tidak dapat terdekomposisi oleh mikroorganisme pengurai (nonbiodegradable), sehingga penumpukaninya di alam dikhawatirkan akan menimbulkan masalah lingkungan. Oleh karena itu penelitian ini juga berfokus untuk meneliti ulang limbah plastik yaitu pelipatan bekas dari aqua cup untuk mengurangi penumpukan limbah plastik di alam.

Pengujian degradasi komposit termoplastik dalam penelitian ini juga dilakukan pada komposisi lain terdahulu yang telah dilakukan untuk meneliti degradasi komposit [7], Dalam penelitian ini, degradasi komposit dilakukan berdasarkan kelembapan, penggantian kelembapan, suhu, dan penganian suhu sesuai dengan cuaca lingkungan.

Teori

Komposit adalah bahan padat yang dihasilkan melalui kombinasi dari dua atau lebih bahan yang ber lainan dengan sifat-sifat yang lebih baik dan tidak dapat diperoleh dari setiap komponen panyaannya. Komposit sudah digunakan oleh manusia sejak awal abad ke-12. Dewasa ini, pemakaian bahan komposit semakin banyak digunakan seperti dalam bidang permbangunan, konstruksi bangunan, automobil, peralatan olahraga, perabot dan sebagainya [12].

Komposit mempunyai banyak kelebihan dan kekurangan dari segi sifat fisik, mekanik, termal, dan kimia, yaitu:

a) Sifat kekuatan, kekuatan dan kelastisannya yang cukup baik.

b) Keberlanjutan dimensi dan ketahanan termal yang tinggi.

c) Peningkatan modus spesifik (modulus / massa jenis) dan kekuatan spesifik (kekuatan / massa jenis) menyebabkan berat jenis komposit semakin berkurang.

d) Peningkatan ketahanan terhadap bahan lainnya.

e) Biaya produksi dapat dikerugikan karena bahan dasar yang digunakan berkurang.

Namun perlu diketahui bahwa semua sifat diatas tidak dapat diperoleh secara bersamaan. Misalnya, peningkatan sifat kelastis dan kekuatan umumnya mengurangi sifat kelastis bahan komposit tersebut. Jadi pencapai kekuatan optimum komposit yang dihasilkan disesuaikan dengan penggunaan komposit tersebut.

*Sodium Hydroxide atau Natrum Hydroxida adalah sejenis baka logam kauw.
Zat ini digunakan di berbagai macam bidang industri, kebanyakan digunakan sebagai bahan dalam proses produksi bahan kayu dan kertas, tekstil, air minum, sabun dan deterjen. Kegunaan NaOH ini adalah untuk menghilangkan lignin, silika hemicellulosa, dan empulur dari serat agar memiliki impregnasi lebih baik antara serat dan matriks dan meningkatkan kekerasan permukaan serat agar dapat terjadi interaksi yang lebih baik yang menjadi tujuan utama pengolahan secara kimia [8].

Polipropena (PP) merupakan polimer hidrokarbon yang termasuk ke dalam polimer termoplastik yang dapat diolah pada suhu tinggi. Polipropena berasal dari monomer propilen yang diproduksi dari pemanasan minyak bumi. Struktur molekul propilen dapat diilustrasikan pada gambar berikut.

![Gambar 1. Struktur Molekul Propilena](Image)

Tabel 1. Karakteristik Polipropilen

<table>
<thead>
<tr>
<th>Sifat-sifat</th>
<th>Nilai</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denitas</td>
<td>0,9</td>
<td>g/cm³</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>360</td>
<td>kg/cm²</td>
</tr>
<tr>
<td>Pemanjangan/Elongation</td>
<td>8</td>
<td>%</td>
</tr>
<tr>
<td>Luas air pelebaran (220°C/15 kg)</td>
<td>7,5</td>
<td>g/10 menit</td>
</tr>
<tr>
<td>Daya serap air setelah 24 jam</td>
<td>0,02</td>
<td>%</td>
</tr>
<tr>
<td>Modulus kelenturan (Flexural modulus)</td>
<td>17,000</td>
<td>kg/cm²</td>
</tr>
<tr>
<td>Titik leleh</td>
<td>176</td>
<td>°C</td>
</tr>
</tbody>
</table>

Serabut kelapa berada diantaranya tempurung kelapa dan kulit kelapa. Serabut sel sel berbentuk panjang dan berongga dengan dinding tipis yang terbuat dari selulosa. Dinding ini lebih tahan serbuan pada serbuk sari dan menguning dimana terbentuk lapisan lignin pada dindingnya. Panjang sel memiliki panjang 1mm (0,04 in) dan berdiameter 10-20um (0,0004-0,0008 in). Seratnya memiliki panjang 10-20cm (4-12 in). Terdapat 2 jenis dari serabut kelapa. Jenis pertama adalah korong kokalet yang dipakai dari kelapa yang sudah tua. Serat ini tipis, dan kuint sehingga digunakan untuk sikat dan keset kaki [15].

Adapun sifat-sifat fisika dan kimia dari serabut kelapa dapat dilihat pada Tabel 2 dan 3 berikut ini [2][4].

Tabel 2. Sifat-sifat Fisika Serabut Kelapa

<table>
<thead>
<tr>
<th>Sifat-sifat</th>
<th>Nilai</th>
<th>Satuan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denitas</td>
<td>1,25</td>
<td>g/cm³</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>220</td>
<td>MPa</td>
</tr>
<tr>
<td>Elongation modulus</td>
<td>6</td>
<td>GPa</td>
</tr>
<tr>
<td>Elongation at failure</td>
<td>15-25</td>
<td>%</td>
</tr>
</tbody>
</table>

Tabel 3. Komposisi Kimia Serabut Kelapa

<table>
<thead>
<tr>
<th>Komposisi</th>
<th>Nilai (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selulosa</td>
<td>32-43</td>
</tr>
<tr>
<td>Hemicellulosa</td>
<td>0,15-0,25</td>
</tr>
<tr>
<td>Lignin</td>
<td>40-45</td>
</tr>
<tr>
<td>Pektin</td>
<td>3-4</td>
</tr>
<tr>
<td>Kelembaban</td>
<td>8</td>
</tr>
</tbody>
</table>

Komposit memiliki banyak jenis uji, tetapi yang diberikan dalam penelitian ini adalah sebagai berikut:

1. **Uji sifat kekuatan patah/bentur (impact strength)**

 Besaran sifat mekanis yang lain adalah kekuatan bendera, yang diadakan untuk melemparkan spesimen. Spesimen ditampilkan pada suatu “penang” dengan salah satu ujungnya vertikal diatas pemiring. Suatu pendulum dengan bobot dan sudut tertentu dianyorkan pada spesimen sampai terjadi patahan. Kekuatan bentur dihitung dari energi bentuk patah yang digunakan menyatukan spesimen sampai setengah bagian. Kekuatan patah dapat dinyatakan dalam persamaan sebagai berikut:

 \[K = \frac{mgh_b}{h_a} \]

 Dimana:
 - \(K \) = Kekuatan patah (cal/cm²)
 - \(m \) = massa pendulum (Kg)
 - \(g \) = percepatan gravitasi (9,8 m/s²)
 - \(h_a \) = tinggi awal pendulum (m)
 - \(h_b \) = tinggi pendulum setelah spesimen patah

2. **Uji degradasi**

 Degradasi dari polimer melalui suatu tahap, dimana pertama polimer diubah menjadi monomer, lalu monomer tersebut menjadi mineral. Kebanyakan polimer terlalu besar untuk melalui membran sel, jadi polimer tersebut terlebih dahulu di depolimerisasi menjadi monomer-monomer sebelum diserap dan dibiodegradasi oleh mikroba. Penentu
awal dari sebuah polimer dapat diperoleh dari cara fisik, kimia dan biologi. Pencahayaan secara fisik berupa pemanasan/pendinginan, pembekuan/pencairan, pembasahan/pengeringan, dapat menghasilkan kerusakan mekanik berupa keretakan. Pertumbuhan dari jamur juga dapat membantu pembengkakan dan letusan, dikarenakan jamur membutuhkan permukaan padatan polimer. Hal ini mempermudah keadaan permukaan polimer dan membantu permukaan baru yang bereaksi dengan senyawa kimia dan biokimia, yang merupakan kondisi kritis pada degradasi polimer.[9]

Hasil
A. Penentuan Rasio optimum berdasarkan Kekuatan Tarik

Dari hasil perobaan untuk penentuan rasio optimum komposit diperoleh bahwa rasio optimum komposit adalah pada 85% dimana kekuatan tariknya adalah 23,765 MPa dan pemanjangan saat putus 5,627 cm. Rasio 90% memiliki kekuatan tarik tertinggi 24,481 MPa namun memiliki pemanjangan saat putus yang rendah yaitu 1,469 cm. Sehingga hasil ini diperoleh bahwa rasio optimum komposit PP leks berpengisi serbus serabat kelapa adalah 85%.

B. Perbadaan Kekuatan Bentur pada Komposit dengan pengolahan NaOH 1 dan 2 hari

Gambar 4. Grafik Kekuatan Bentur Komposit pada uji Degradasi Komposit dengan pengolahan NaOH 1 dan 2 hari

Dari hasil grafik yang diperoleh, dapat dilihat bahwa kekuatan bentur komposit lebih baik dengan perendaman 2 hari dibandingkan dengan 1 hari pada uji degradasi, yaitu 0,080 J/mm pada 10 hari, 0,038 J/mm pada 20 hari dan 0,046 J/mm pada 30 hari.

Hal ini disebabkan karena pada serabut kelapa terdapat lignin dan selulosa yang bersifat non polar. Adapun penguruh dari perendaman NaOH terhadap serat adalah untuk melepaskan lignin yang terdapat pada serabut kelapa, sehingga kadar Lignin yang bersifat non polar di dalam serabut kelapa dikurangi yang menyebabkan tingkat kekerasan serabut kelapa berkurang[10].

Dari perobaan yang dilakukan diperoleh bahwa perendaman selama 2 hari menunjukkan keadaan yang optimum walaupun terjadi penurunan kekuatan bentur yang signifikan dari pada hari ke-20, namun kekuatan bentur pada perendaman selama 2 hari sedikit lebih baik dibandingkan perendaman selama 1 hari.

Gambar 2. Grafik Kekuatan Tarik Komposit untuk Penentuan Rasio optimum Komposit

Gambar 3. Grafik Pemanjangan Saat Putus Komposit untuk Penentuan Rasio optimum Komposit

Gambar 4. Grafik Kekuatan Bentur Komposit pada uji Degradasi Komposit dengan pengolahan NaOH 1 dan 2 hari
C. Perubahan Kekuatan Bentur pada uji Degradiasi Komposit dengan pengolahan NaOH 1 dan 2 hari

![Grafik Kekuatan Bentur Komposit dengan pengolahan NaOH 1 dan 2 hari](image)

Gambar 5. Grafik Kekuatan Bentur Komposit dengan pengolahan NaOH 1 dan 2 hari

Dari hasil percobaan yang diperoleh, dapat dilihat bahwa kekuatan bentur komposit tidak begitu banyak mengalami perubahan pada perendaman NaOH selama 1 hari, sedangkan pada perendaman selama 2 hari terjadi penurunan kekuatan bentur dari 0,086 J/mm pada 10 hari, 0,048 J/mm pada 20 hari dan 0,046 J/mm pada 30 hari.

Dari teori yang didapat, dikotaknya bahwa penurunan kekuatan bentur diakibatkan oleh komposit yang terparah oleh sinar UV dan suhu. Penurunan sinar kekuatan bentur komposit disebabkan oleh gugus-gugus karbonil pada komposit menyervap sinar UV pada saat penjernihan dan pengangkutan yang kemudian membentuk kandungan tereksitas yang cukup berenergi untuk melakukan pembelahan/pemutusan ikatan. Selanjutnya, di udara juga terkandung banyak mikroorganisme yang diduga faktor lingkungan seperti suhu, uap air, sinar matahari, oksigen, dan kelembaban yang berasa dari pohon di dekatnya. Adapun plastik PP merupakan jenis terpolimer yang sensitif terhadap paparan radiasi dan panas matahari secara langsung, sehingga hal ini yang menyebabkan menurunnya kekuatan bentur pada komposit. [13]

Kesimpulan

Adapun kesimpulan yang didapat dari penelitian ini adalah sebagai berikut:
1. Kekuatan bentur mengalami penurunan selama pengujian degradasi, yaitu 0,086 J/mm pada 10 hari, 0,048 J/mm pada 20 hari dan 0,032 J/mm pada 30 hari.
2. Waktu optimum untuk perendaman dengan NaOH adalah selama 2 hari yang berasal dari kekuatan bentur yang lebih baik dari pada perendaman 1 hari.
3. Pengaruh larutan alkali pada serabut kelapa adalah mengurangi kadar lignin yang bersifat non polar sehingga tingkat kemopolaran serabut serabut kelapa berkurang.

Daftar Pustaka

Originality Report

<table>
<thead>
<tr>
<th>Similarity Index</th>
<th>Internet Sources</th>
<th>Publications</th>
<th>Student Papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>4%</td>
<td>4%</td>
<td>0%</td>
<td>2%</td>
</tr>
</tbody>
</table>

Primary Sources

<table>
<thead>
<tr>
<th>Source</th>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. id.wikipedia.org</td>
<td>Internet Source</td>
<td>2%</td>
</tr>
<tr>
<td>2. text-id.123dok.com</td>
<td>Internet Source</td>
<td>2%</td>
</tr>
</tbody>
</table>

Exclude quotes: On
Exclude bibliography: Off
Exclude matches: < 2%