International Journal of Science and Research Methodology

Published by
HUMAN JOURNALS

Year publication 2015
Frequency 12
Article Publishing Frequency 0.000

Abbreviation IJSRM.HUMAN Country India
ISSN (print) - ISSN (online) 2454-2008
Journal Website http://ijram.humanjournals.com

Editor in Chief A A KHADE

ISI All articles 0 Date added to OAJI 05 Jul 2015
Scopus All issues 0 Free access —
DOAJ Full text language ENGLISH

Journal discipline Multidisciplinary Sciences

Journal description International Journal of Science and Research Methodology (www.ijram.humanjournals.com) is an open access, peer reviewed international monthly journal dedicated to the latest advancement in Scientific Research. The Journal and Editorial Board endeavor to attract and publish articles from a variety of disciplines and educational settings to promote excellence in the field of research.

Journal is indexed by —

Visitors Counter
Today 612
Yesterday 2311
This week 5114
Last week 14443
This month 23202
Last month 64737
All days 1375918

© 2013-2017, Open Academic Journals Index. All rights reserved.
Editorial Board

HUMAN JOURNALS

EDITORIAL BOARD, ADVISORY BOARD AND REVIEWERS ETC.

International Journal of Pharmacy and Pharmaceutical Research
International Journal of Science and Research Methodology
International Journal of Management and Research
International Journal of Research Methodology

Prof. A. A. Khade
Editor in Chief,
Ex-Assistant Professor
Government College of Pharmacy,
Karad, INDIA.

Jennifer Borg
Assistant Editor,
Qormi, Malta,
Europe.

Dr. Subha Ganguly
Scientist (Food Microbiology) & Scientist In-charge, Sub-Projects
All India Coordinated Research Project on Post Harvest Technology (ICAR)
(Directorate of Research, Extension & Farms WBUAFS)
Department of Fish Processing Technology, Faculty of Fishery
Prof. Dr. Mohamed Salama Mohamed
Professor of Pharmaceutics
Faculty of Pharmacy, UITM,
MALAYSIA.

Dr. S. Balaabirami
DBT- Postdoctoral Fellow,
Department of Biotechnology (AIM) Lab,
Indian Institute of Technology Madras [IIT],
Chennai, INDIA.

Dr. K. Jagadeesh
M.B.B.S, M.D, P.D.C.R
Professor & Head,
Dept. of pharmacology &Pharmacotherapeutics,
Shivamogga Institute of Medical Sciences
Karnataka, INDIA.

Rita Akosua Dickson, PhD
Faculty Of Pharmacy & Pharm. Sci.
College Of Health Sciences
Kwame Nkrumah University Of Science
& Technology
Accra Rd, Kumasi,
Ghana.

Sunday O. Otimenyin, PhD
Department Of Pharmacology,
University Of Jos,
Jos, Plateau State,
Nigeria.

Dr. Sugato Banerjee
Dept. Of Pharmaceutical Science
BIT, MESRA, Ranchi.
INDIA

Pharkphoom Panichayupakaranant, PhD
Department Of Pharmacognosy And Pharmaceutical Botany,
Faculty Of Pharmaceutical Sciences,
Prince Of Songkla University,
Thailand.
Accumulation Dynamics of Polyphenols in Alcea nudiflora: Identification and Comparative HPTLC Analysis

Published October 25, 2016

Download Article Here: 7-m-j-rahmatova-n-m-mamatkulova-kh-u-khodjamysov-n-i-mukarramov-n-k-khidyrova

133 total views, 1 views today

Posted in Uncategorized

Agricultural Commodity Zoning Based on Agroecology Zone in Gopgopan Catchment Area, Tobasamosir North Sumatera

Published October 25, 2016

Download Article Here: 8-tionoe-prutha-trawati-priya

120 total views, no views today

Posted in Uncategorized

Effect of Microbes Phosphate Solubilizing and Organic Matter to Status the Phosphate on Andisol Impacted by Mount Sinabung Eruption, North Sumatera

Published October 25, 2016

Download Article Here: 9-marianti-sembrina-hardy-gucy-and-jamilah

133 total views, no views today

Posted in Uncategorized

Solving "P versus NP Problem" on Example of Subset Sum Problem
Effect of Microbes Phosphate Solubilizing and Organic Matter to Status the Phosphate on Andisol Impacted by Mount Sinabung Eruption, North Sumatera

Keywords: Andisol, microbes phosphate solubilizing, P available and organic matter

ABSTRACT

The amount of P available to plants is very less as compared to total soil P. Field study aimed to know the effect of microbes phosphate solubilizing and organic matter to status the phosphate on andisol impacted by mount Sinabung eruption, North Sumatera. In vitro screening of bacteria as and fungi from surrounding horticulture land, on their ability to dissolve phosphate, showed that Burkholderia cepacia was the best bacteria and Talaromyces pinophilus the best fungi. The research was conducted in Kutarayat, Namantar, regency of Karo. The research applied randomized block design factorial with two treatment factor and three replications. Microbe factor were A0=control, A1= Burkholderia cepacia (30 mL), B2= Talaromyces pinophilus (30 mL) and organic matter factor were B0=control, B1= chicken feces organic matter (100 g/polybag),B2= Cow feces organic matter (100 g/polybag), B3= rice straw organic matter (100 g/polybag),B4= Wood sawdust (100 g/ polybag) and B5=Mixtures of vegetables. Parameter measured were soil pH, P-Al , P-Fe, available-P and Total P. Applications of Phosphate solubilizing microorganisms and organic matter increased P available (13.38-36.98%), when compare with control. Therefore, the best treatment was Talaromyces pinophilus 20 mL and Cow feces organic matter (100 g/polybag).
INTRODUCTION

Phosphorous (P) plays an important role in regulating the vital metabolism and concomitantly the health of plants. However, a greater part of soil P, approximately 95–99 %, is insoluble and, hence, cannot be utilized by the plants. The rapid fixation of P by soil constituents leads to soil P deficiency (Tisdal et al, 1995). The main source of P is rock, which is not renewable, making this resource limited. P is derived from the parent materials which are mostly insoluble, except in certain circumstances.

Andisol is one of the soil types that has problem with the availability of phosphate (Shoji and Takahashi, 2002) Karo plateau is a horticulture center in North Sumatra and the soil in this area is Andisol. It has volcanic ash and rich of minerals and contains Al and Fe in huge amount. The retention of P in Andisol soil in Kutarayat village, Karo plateau, or north of Mount Sinabung ranged from 95.04-99.44% (Mukhlis et al, 2014). According to Balitbangtan, the volcanic ash materials of Mount Sinabung contained such elements as S (0.05-0.32%) Fe (0.58-3.1%), and Pb (1.5-5.3%). Meanwhile, Cd, As, Ag and Ni were undetectable. The soil pH was 4.4-6.5 and the volcanic ash pH was 3.3-3.5, with pH thereby causing the availability of P to below (Balitbangtan, 2014).

The P of land becomes available through the secretion of organic acids produce by roots or microbes. In this regard, P supply through biological systems is considered a viable alternative, and inoculation of P-solubilizing microorganisms, especially fungi to soil, is a reliable source for increasing soluble P in soil. Phosphate solubilizing microorganisms have been reported from different ecological. Following inoculation, microorganisms have proved to improve the growth of horticultural crop (Sahoo and Gupta, 2014). Therefore, the objective of this study was to measure the potential of the microbes phosphate solubilizing at various doses of organic matter in improving the P availability in the Andisol soil impacted by the eruption of Mount Sinabung.

MATERIALS AND METHODS

The research was conducted in Kutarayat Village, Naman Teran District, Karo Regency (North of Mount Sinabung) in April – Juli 2016, and the following characteristics: pH H₂O 4.29, C 5.74%, N 0.56%, P total 2538.76 mg/kg, P available 81.49 mg/kg, 0.4%K, and CEC 46.29 me/kg.
2.1. Experimental Design

This study used Factorial Randomized Block Design with two factors and 3 replications. Factor I was Phosphate solubilizing microorganisms, consisting of treatments Microbe factor were A0=control, A1= *Burkholderia cepacia* (20 mL), A2= *Talaromyces pinophilus* (20 mL) and organic matter factor were B0=control, B1= chicken feces organic matter (100 g/polybag), B2= Cow feces organic matter (100 g/polybag), B3= rice straw organic matter (100 g/polybag), B4= Wood sawdust (100 g polybag) and B5= Mixtures of vegetables. Inoculation of *B. Cepacia* with population 8×10^8 and *T. pinophilus* 7×10^8. Soil samples were taken at the age 45 days incubation on the 5 kg soil/polybag. The application Phosphate solubilizing microorganisms and organic matter start in the beginning of the research. The parameters measured were soil pH, P-Al, P-Fe, P-Available and Total P

3. RESULTS AND DISCUSSION

The statistical analysis showed that application of Phosphate solubilizing microorganisms affected P availability Soil significantly. Application of organic matter significant effected on P availability (Table 1)

Table 1. The mean of pH, available PP-Fe, P-Al and P Total

<table>
<thead>
<tr>
<th>Treatment</th>
<th>pH Soil</th>
<th>P-Al (ppm)</th>
<th>P-Fe (ppm)</th>
<th>P-available (ppm)</th>
<th>P Total (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate solubilizing microorganisms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A0=control</td>
<td>4.23</td>
<td>2424.7</td>
<td>638.6</td>
<td>90.76a</td>
<td>0.363</td>
</tr>
<tr>
<td>A1= B. cepacia 20 mL</td>
<td>4.40</td>
<td>2259.8</td>
<td>623.3</td>
<td>123.46b</td>
<td>0.368</td>
</tr>
<tr>
<td>A2= T. pinophilus 20 mL</td>
<td>4.57</td>
<td>2429.6</td>
<td>609.6</td>
<td>137.60ab</td>
<td>0.382</td>
</tr>
<tr>
<td>Organic matter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B0=control</td>
<td>4.03</td>
<td>2435.7</td>
<td>637.46</td>
<td>103.41a</td>
<td>0.361</td>
</tr>
<tr>
<td>B1= chicken feces</td>
<td>4.56</td>
<td>2399.4</td>
<td>661.81</td>
<td>121.15ab</td>
<td>0.385</td>
</tr>
<tr>
<td>B2= Cow feces</td>
<td>4.35</td>
<td>2289.3</td>
<td>601.47</td>
<td>136.96bcdef</td>
<td>0.387</td>
</tr>
<tr>
<td>B3= rice straw</td>
<td>4.24</td>
<td>2428.7</td>
<td>635.83</td>
<td>132.06bc</td>
<td>0.378</td>
</tr>
<tr>
<td>B4= Wood sawdust</td>
<td>4.17</td>
<td>2321.2</td>
<td>610.25</td>
<td>132.56bcd</td>
<td>0.377</td>
</tr>
<tr>
<td>B5=Mixtures of vegetables</td>
<td>4.43</td>
<td>2321.3</td>
<td>632.22</td>
<td>118.25a</td>
<td>0.364</td>
</tr>
</tbody>
</table>
Note: Figures in rows and columns followed by lower case letters indicate a significant effect on the level of 5% according to LSD.

P –Al of treatment 20 mL *B. cepacia* inoculum/polybag was smaller compared to other treatments. It was 7.3% smaller compared to control. The P-Al of Cow feces organic matter (100 g/polybag) application was smaller compared to treatments. It was 6.01% smaller compared to control. P-Fe of treatment 20 mL *T. pinophilus* inoculum/plant was smaller compared to other treatments. It was 4.5% higher compared to control. The P available of Cow feces organic matter (100 g/polybag) application was smaller (5.6%) compared to control.

Solubilization of Fe and Al by PSMs occurs via proton release accompanied by decrease in the negative charge of adsorbing surfaces to facilitate the sorption of negatively charged P ions. Carboxylic acids mainly solubilize Al-P and Fe-P (Khan et al. 2007; Henri et al. 2008) through direct dissolution of mineral P as a result of anion exchange of PO$_4^{3-}$ by acid anion or by chelation of both Fe and Al ions associated with phosphate (Omar, 1998).

P Total of treatment 20 mL *T. pinophilus* inoculum/polybag was higher compared to other treatments. It was 13.57% higher compared to control. The P available of *T. pinophilus* application increased P available higher compared to control. Whereas application of *T. pinophilus* 20 mL, caused P available (137.6 ppm) or 34.04% higher than control. The P available of Cow feces organic matter (100 g/polybag) application increased P available (24.49%) higher compared to control. Phosphate solubilizing microorganisms generates organic acids such as citric acid, malate, fumarate, glutamate, succinate, lactate, oxalate and beta-ketobutyrate acid capable of dissolving P. Mechanisms of P dissolution are by releasing organic acids and chelate Al, Fe, Ca and Mg cause P available for up taking by plant (SubbaRao, 1999).

Interaction of Phosphate solubilizing microorganisms treatment and organic matter increased The pH soil on treatment of *T. pinophilus* 20 mL and Cow feces organic matter (100 g/polybag) was the highest compared to other, (Figure 1). The P Total Treatment *T. pinophilus* 20 mL and Cow feces organic matter (0.41%), and it also decreased with Cow feces organic matter increasing except for treatment microorganisms (Figure 2). P- Fe on treatment *T. pinophilus* 20 mL and Wood sawdust (100 g/polybag) 25.65% compare to control (Figure 3). P- Al on treatment *T. pinophilus* 20 mL and Mixtures of vegetables (100 g/polybag) 26.38
% compare to control (Figure 4). P available on treatment *T. pinophilus* 20 mL and Cow feces organic matter (100 g/polybag) (36.98%) compare to control (Figure 5). Sembiring et al (2015) found that the inoculation of *T. Pinophilus* increased P available (14.78-64.79%) on Andisol impacted by mount Sinabung eruption.

Fig.1. The relationship between Phosphate solubilizing microorganisms treatment and organic matter on pH Soil.

Fig.2. The relationship between Phosphate solubilizing microorganisms treatment and organic matter on P Total Soil (%)
Fig. 3. The relationship between Phosphate solubilizing microorganisms treatment and organic matter on P-Fe (ppm)

Fig. 4. The relationship between Phosphate solubilizing microorganisms treatment and organic matter on P-Al (ppm)
Fig. 5. The relationship between Phosphate solubilizing microorganisms treatment and organic matter on P Available (ppm)

CONCLUSION

Applications of Phosphate solubilizing microorganisms and organic matter increased P available (13.38-36.98%), when compare with control. Therefore, the best treatment was *Talaromyces pinophilus* 20 mL and Cow feces organic matter (100 g/polybag) on Andisol impacted by mount Sinabung eruption.

REFERENCES

Judul karya ilmiah (Artikel) : Effect of Microbes Phosphate Solubilizing and Organic Matter to Status the Phosphate on Andisol Impacted by Mount Sinabung Eruption, North Sumatera

Jumlah Penulis : 3 orang
Status Pengusul : penulis pertama

Identitas Jurnal Ilmiah :
- b. Nomor ISSN: 2454-2008
- d. Penerbit: Human Journals
- e. DOI artikel (jika ada):
- g. Terindeks di Scopus:

Kategori Publikasi Jurnal Ilmiah (beri √ pada kategori yang tepat):
- [] Jurnal Ilmiah Internasional / internasional berputati, **
- [] Jurnal Ilmiah Nasional Terakreditasi
- [] Jurnal Ilmiah Nasional/Nasional terindeks di DOAJ, CABI, COPERNICUS**

Hasil Penilaian Peer Review:

<table>
<thead>
<tr>
<th>Komponen Yang Dinilai</th>
<th>Nilai Maksimal Jurnal Ilmiah</th>
<th>Nilai Akhir Yang Diperoleh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Internasional</td>
<td>Nasional Terakreditasi</td>
</tr>
<tr>
<td>a. Kelengkapan unsur isi buku (10%)</td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td>b. Ruang lingkup dan kedalaman pembahasan (30%)</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>c. Kecukupan dan kemutahiran data/informasi dan metodologi (30%)</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>d. Kelengkapan unsur dan kualitas penerbit (30%)</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Total = (100%)</td>
<td>89</td>
<td></td>
</tr>
</tbody>
</table>

Nilai Pengusul

Catatan Penilaian artikel oleh Reviewer:
Artikel *original dan motahhir*, karena *kejadian erupsi erupsi*

Medan,
Reviewer 1

Nama: Prof. Dr. Ir. T. Sabrina, MSc
NIP: 196406201989032001
Unit kerja: Fakultas Pertanian Universitas Sumatera Utara
LEMBAR
HASIL PENILAIAN SEJAWAT SEBIDANG ATAU PEER REVIEW
KARYA ILMIAH : JURNAL ILMIAH

Judul karya ilmiah (Artikel) : Effect of Microbes Phosphate Solubilizing and Organic Matter to
Status the Phosphate on Andisol Impacted by Mount Sinabung
Eruption, North Sumatera

Jumlah Penulis : 3 orang.

Status Pengusul : penulis pertama

Identitas Jurnal Ilmiah :
| b. Nomor ISSN : 2454-2008 |
| c. Volume, nomor, bulan, tahun : Oktober 2016; Vol. 4 (4): 106-113 |
| d. Penerbit : Human Journals |
| e. DOI artikel (jika ada) : |
| f. Alamat web Jurnal : www.ijsrm.humanjournals.com |
| g. Terindeks di Scopus : |

Kategori Publikasi Jurnal Ilmiah :
Jurnal Ilmiah Internasional / internasional berpublikasi;**
Jurnal Ilmiah Nasional Terakreditasi
Jurnal Ilmiah Nasional/Nasional terindeks di DOAJ, CABI, COPERNICUS**

Hasil Penilaian Peer Review :

<table>
<thead>
<tr>
<th>Komponen Yang Dinilai</th>
<th>Nilai Maksimal Jurnal Ilmiah</th>
<th>Nilai Akhir Yang Diperoleh</th>
</tr>
</thead>
<tbody>
<tr>
<td>g. Kelengkaran unsur isi buku (10%)</td>
<td>Internasional: ☑</td>
<td>8</td>
</tr>
<tr>
<td>r. Ruang lingkup dan kedalaman pembahasan (30%)</td>
<td>Nasional Terakreditasi: ☐</td>
<td>26</td>
</tr>
<tr>
<td>s. Kecukupan dan kemutahiran data/informasi dan metodologi (30%)</td>
<td>Nasional: ☐</td>
<td>28</td>
</tr>
<tr>
<td>t. Kelengkapan unsur dan kualitas penerbit (30%)</td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>Total = (100%)</td>
<td></td>
<td>89</td>
</tr>
</tbody>
</table>

Nilai Pengusul

Catatan Penilaian artikel oleh Reviewer:
Arcaan: mutuat / Baru loporo mcomoahas pangarang
Empis Sinabung oen cak munggarang.

Medan,
Reviewer II

Nama : Dr. Ir. Muklis, MSi
NIP. : 196201021988031004
Unit kerja: Fakultas Pertanian Universitas Sumatera Utara