International Journal of Pharmaceutical and Clinical Research is a monthly international journal publishing the finest peer-reviewed research in the fields of Pharmaceutics, Pharmaceutical & Medicinal Chemistry, Pharmacology, Pharmacognosy, Pharmaceutical Analysis, Computational Chemistry & Molecular Modeling/Drug Design including Pharmacokinetics, Pharmacodynamics, Pharmacoinformatics, Pharmacovigilance, Chemoinformatics and Pharmacogenomics etc. on the basis of its originality, importance, disciplinary interest, timeliness, accessibility, elegance and surprising conclusions.

The over-riding criteria for publication are originality, high scientific quality and interest to a multidisciplinary audience. Papers not sufficiently substantiated by experimental detail will not be published.

Any technical queries will be referred back to the author, although the Editors reserve the right to make alterations in the text without altering the technical content. Manuscripts submitted under multiple authorship are reviewed on the assumption that all listed authors concur with the submission and that a copy of the final manuscript has been approved by all authors and tacitly or explicitly by the responsible authorities in the laboratories where the work was carried out.

If accepted, the manuscript shall not be published elsewhere in the same form, in either the same or another language, without the consent of the Editors. Authors must state in a covering letter when...
submitting papers for publication the novelty embodied in their work or in the approach taken in their research.

IJPCR insists on ethical practices in both human and animal experimentation. Evidence for approval by a local Ethics Committee (for both human as well as animal studies) must be supplied by the authors on demand. Animal experimental procedures should be as humane as possible and the details of anaesthetics and analgesics used should be clearly stated.

The ethical standards of experiments must be in accordance with the guidelines provided by the CPCSEA (animal) and ICMR (human). The journal will not consider any paper which is ethically unacceptable. A statement on ethics committee permission and ethical practices must be included in all research articles under the ‘Materials and Methods’ section.

Authors must be careful when they reproduce text, tables or illustrations from other sources. Plagiarism will be viewed seriously. If any ethical concerns are raised against published manuscript along with proofs, then the editorial board will investigate the matter and can take decisions accordingly, the decision may include removal of manuscript as well as blacklisting of authors for future publication in the journal. The authors must understand the seriousness of above statement before submitting papers in IJPCR.

All rights are reserved to editor-in-chief, IJPCR. IJPCR will be published monthly
The SJR indicator measures the scientific influence of the average article in a journal, it expresses how central to the global scientific discussion an average article of the journal is. Cites per Doc. (2y) measures the scientific impact of an average article published in the journal, it is computed using the same formula that journal impact factor™ (Thomson Reuters).

<table>
<thead>
<tr>
<th>Indicator</th>
<th>2008-2015 Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SJR</td>
<td>0.12</td>
</tr>
<tr>
<td>Cites per doc</td>
<td>0.15</td>
</tr>
<tr>
<td>Total cites</td>
<td>19</td>
</tr>
</tbody>
</table>

Pharmaceutics Focussed Journal

Pharmacology Focussed Journal

Pharmaceutical Analysis Journal

Clinical Research Focussed Journal
Monthly Publishing Peer Reviewed Journal

Editor in Chief

Dr. Anantha Naik Nagappa
Manipal College of Pharmaceutical Sciences
Manipal University, Madhava Nagar Manipal 576 104, Karnataka State, INDIA.
Click for Full Profile

Editorial Board

Dr. D. N. Mishra
Department of Pharmaceutical Sciences,
Guru Jambheshwar University of Science and Technology, Haryana, INDIA
Dr. Shailender Singh
Department of Pharmaceutical Sciences,
Guru Jambheshwar University of Science and Technology, Haryana, INDIA

Dr. Amit K. Tiwari
A304 Patterson Hall, Department of Biomedical Sciences, College of Veterinary Medicine,
Nursing and Allied Heath, Tuskegee University, Tuskegee, AL 36088, USA

Dr. Rakesh Gollen
Novartis Institutes for Biomedical Research, Drug Metabolism and Pharamcokinetics,
NPKPD, USEH, 436 3203, One Health Plaza, East Hanover, NJ 07936-1080, USA

Dr. Kalpesh Gaur
Geetanjali Institute of Pharmacy,
Geetanjali University Udaipur INDIA
Dr. M.M. Gupta
School of Pharmacy, Faculty of Medical Sciences
The University of the West Indies, St. Augustine, Trinidad & Tobago, West Indies

Dr. Akram Ahmad
Department of Clinical Pharmacy,
UCSI University, Kuala Lumpur, Malaysia

Dr. Soheir El Sayed El Sayed Kotob
Ph.D, Researcher on Hormones Department,
Medical Research Division, National Research Centre, Egypt

Dr. Jongwha Chang
Department of Social & Administrative Sciences
800 Lakeshore Dr, Birmingham, Alabama 35229, United States
Dr. Abdul Rohman
Department of Pharmaceutical chemistry, Faculty of Pharmacy
Kaliurang KM 4,5 Sekip Utara, Yogyakarta, Indonesia 55281

Dr. Zullies Ikawati
Gadjah Mada University, Faculty of Pharmacy
Jl. Kaliurang Km 6,7 Gg Sumatera E-117 Yogyakarta, Indonesia

Dr. Agung Endro Nugroho
Gadjah Mada University, Faculty of Pharmacy
Kaliurang KM 4,5 Sekip Utara, Yogyakarta, Indonesia 55281
Dr. Nobuyuki Wakui
2-4-41 Ebara, Shinagawa-ku,
Tokyo 142-8501, Japan

Dr. Asim Ahmed Elnour
Department of Pharmacology, Faculty of Medicine and Health Sciences
United Arab Emirates University, UAE

Dr. Consolacion Y Ragasa
Chemistry Department,
De La Salle University, Philippines
The SJR indicator measures the scientific influence of the average article in a journal, it expresses how central to the global scientific discussion an average article of the journal is. Cites per Doc. (2y) measures the scientific impact of an average article published in the journal, it is computed using the same formula that journal impact factor™ (Thomson Reuters).
Abstract about Conference [link to conference]
To facilitate the experts meeting and sharing knowledge, Faculty of Pharmacy Gadjah Mada University has organized The 4th International Conference on Pharmacy and Advanced Pharmaceutical Sciences (ICPAPS 2015) with the captivating theme: “Integrating Sosio-entrepreneurship in Marine Development for Sustainable Pharmacy” as a response to the increasing needs for marine pharmaceuticals. The conference was held in collaboration with the Indonesian Ministry of Coordinating Maritime Affairs, Nara Institute of Technology Japan, Leiden University and the Netherland, Mahidol University Thailand and Monash University Malaysia.

1. Immunomodulatory Effect of Massoia Bark Extract and the Cytotoxicity Activity Against Fibroblast and Vero Cells in Vitro
Permanasari P, Hertiani T, Yuswanto A

Abstract

2. Leunca (Solanum Nigrum L.) Herb Sensitizes Doxorubicin Resistant MCF-7 Cells
Riris Istighfari Jenie, Rumiayti, Woro Anindito Sri Tunjung, Dyanytisas Dewi Pamungkas Putri, Adam Hermawan, Edy Meiyanto

Abstract

3. Cytotoxic and Apoptotic Effects of Para-Hydroxy Meta Methoxy Chalcone (Phmmc) on T47d Breast Cancer Cells
Retno Arianingrum, Retno Sunarminingsih, Edy Meiyanto, and Sofia Mubarak

Abstract
4. Antiplasmodial Activity of Endophytic Fungi Isolated from Artemisia Annua, I.
Indah Purwantini, Wahyono, Mustofa, Ratna A. Susidarti, Eti N. Sholikhah, Rani A.N. Hestiyani

Abstract

5. Optimization of Extraction Process and Dechlorophyllation of Ethanolic Extract of Andrographis Paniculata Ness
Puspitasari, A, Pramono, S, Martono, S, Widyarini, S

Abstract

6. Study of Radical Scavenger Activity, Total Phenol and Flavonoid Contents of Artocarpus Altilis leaves Extracts
Fakhrudin, N,Khairunnisa, S.Y., Azzahra, A, Ajiningtyas, R.J

Abstract

7. Combination Effect of Ethylacetate Extract of Plectranthus Amboinicus (Lour.) Spreng. With Doxorubicin Agains Hela Cell Lines
Poppy Anjelisa Z. Hasibuan, Rosidah

Abstract

Hudan Taufiq, Endang Lukitaningsih, Sudibyo Martono

Abstract

9. In Silico and in Vivo Qualitative Relationships of Para-Aminophenol Analogues
Hari Pumomo, Umar Anggara Jenie, Agung Endro Nugroho, Harno Dwi Pranowo

Abstract
10. Docking, Synthesis and Cytotoxicity Test on Human Breast Cancer Cell Line (MCF-7) of N-(Allylcarbamothioyl)Benzamide
Tri Widiandani, Lusiana Arifianti, Siswandro

11. A Novel Reversed Phase High Performance Liquid Chromatography Method To Accurately Determine Low Concentrations Of Curcumin In Rat Plasma
Setyaningsih D, Murti YB, Martono S, Hinrichs W.L.J., Hertiani T, Fudholi A

12. 6-Allyl-3-(4-Methoxybenzyl)-8-Methoxy-3,4-Dihydro-2h-Benzof[E][1,3]Oxazine and 4-Allyl-2-Methoxy-6-(4-Methoxybenzyl)Aminomethylphenol: Synthesis and Cytotoxicity Test on Mcf-7 Cells
Marcellino Rudyanto, Tri Widiandani, Achmad Syahrani

13. Development and Validation of HPLC Method for Determination of Curcuminoids in Indonesian Herbal Drinks
Febri Annuryanti, Asri Darmawati, Juniar Moechtar

14. Effect of Mobile Phase Composition, Organic Modifier, and Flow Rate on Selectivity and Retention of Stevioside and Rebaudioside A on Isocratic RP-HPLC Analysis
Yohanes Martono, Sugeng Riyanto, Abdul Rohman, Sudibyo Martono

15. The Stereospecific Analysis of Canarium Indicum Oil-Fatty Acid Based in Triglycerides Using High-Performance Liquid Chromatography
Rahman H, Sitompul JP, Anggadiredja K, Lee HW, Gudinata T
Asri Darmawati, Deby Kusumaningrum, Isnaeni, Muhamad Zainuddin

Abstract

17. *In Vitro* Ace Inhibitory Assay of Extracts Containing Flavonoid-Phenolic Compounds of Edible Plants
Rumiati, Sudarsono, Susanto B.O., Mayasari S.K., Wijaya R.N

Abstract

18. Use of Thin Layer Chromatography and FTIR Spectroscopy Along with Multivariate Calibration for Analysis of Individual Curcuminoid in Turmeric (*Curcuma longa* Linn) Powder
Abdul Rohman, Hatifah Prapti Lestari, Ratna Wulanarti, Muhammad Khairiskam

Abstract

19. An Experimental Design Of SNEDDS Template Loaded With Bovine Serum Albumin and Optimization Using D-Optimal
Winarti, L, Martien, R, Suwaldi, Hakim, L

Abstract

20. Application of Simplex Lattice Design for the Optimization of the Piroxicam Nanosuspensions Formulation using Evaporative Antisolvent Technique
Tuti Sri Suhesti, Achmad Fudholi, Ronny Martien

Abstract

21. Evaluation of Anti-Fertility Effect of Aqueous Extract of *Costus speciosus* (Koen.) J.E. Smith Rhizome in Mice
Sari I P, Nurrochmad A, Rahayu S

Abstract
22. Blood Glucose Level and Lipid Profile of Streptozotozin-Induced Diabetic Rats Treated With Sargassum polystum Extract
Amir Husni, Fajar Panji Anggara, Alim Isnansetyo, Agung Endro Nugroho

Abstract

23. The Effect of Tuna Fish Oil (Thunnus albacares) on the Total Cholesterol, LDL Cholesterol, HDL Cholesterol and the Triacylglycerol Level on Hypercholesterolemia Rats (Rattus norvegicus)
Tangka J, Banne Y, Dumanauw J M, Rumagit B I

Abstract

24. Antiatherosclerosis Effect of Purified Andrographis paniculata Extract

Abstract

25. Evaluation of Antihyperlipidemic Activity and Total Flavonoid Content of Artocarpus altifilis Leaves Extracts
Fajaryanti N, Nurrochmad A, Fakhrudin N

Abstract

26. Cardioprotective Effect of Ethylacetate Extract of Poguntano (Picria fel-terrae Lour.) Against Doxorubicin-Induced Cardiotoxicity in Rats
Yosua Sihotang, Jansen Silalahi, Sumadio Hadisahputra, Poppy Anjelisa, Denny Satria

Abstract

27. Investigation of Anti-inflammatory Activities of Curcuma aeruginosa Roxb. in Experimental Animals
Triastuti, A, Wibowo, A, Astuti, P

Abstract
28. Validation of an Ion-Pair High Performance Liquid Chromatography for The Determination of Pseudoephedrine HCl, Guaifenesin and Dexchlorpheniramine Maleat in Cough and Cold Medicines
Maria Yolanda, Sudibyo Martono, Abdul Rohman

Abstract

29. Potential Bioactivity of Artificially Fragmented Soft Coral Sinularia sp. and Lobophytum sp. Transplantation
Hefni Effendi

Abstract

30. Comparison of Electrolyte Disturbance of Using Intravenous Aminophylline Versus Nebulization Salbutamol for Exacerbation Asthma in Surabaya, Indonesia
Armelia Lorensia, Zullies Ikawati, Tri Murti Andayani, Daniel Maranatha, Mariana Wahjudi

Abstract

31. Evaluation on Pharmacotherapy Learning Strategies Based on Reflective Pedagogy Paradigm in Pharmacist Education Program Sanata Dharma University
Yosef Wijoyo, Gandes Retno Rahayu, Iwan Dwiprahasto

Abstract

32. Formulation and Characterization Insulin Nanoparticle Using Low Molecular Weight Chitosan and Pectin Polymers with Ionic Gelation Method
Martien R, Sa’adah N, Saifullah T N S

Abstract

33. The Appropriateness of NSAIDs Utilization in a Community Pharmacy at Medan, Indonesia
Tanjung, H R, Sarriff, A, Harahap, U

Abstract
34. Polyketide Isolation from *Anona muricata* Linn Leaves Enhance p53 Expression on Raji Cell Line
Aranti A N, Astirin O P, Prayitno A

Abstract

35. Tuberculosis-Related to Knowledge, Adverse Drug Reactions, Clinical Outcome, Adherence in Tuberculosis Patients and Pharmacist Role, A Preliminary Survey for Pharmacist Intervention Model Development
Nanang Munif Yasin, Djoko Wahyono, Bambang Sigit Riyanto, Ika Puspita Sari

Abstract

Fuad Soegibudiono Wiradjaja, Teuku Nanda Saifullah Sulaiman, Abdul Rohman

Abstract

The SJR indicator measures the scientific influence of the average article in a journal, it expresses how central to the global scientific discussion an average article of the journal is. Cites per Doc. (2y) measures the scientific impact of an average article published in the journal, it is computed using the same formula that journal impact factor™ (Thomson Reuters).
Combination Effect of Ethylacetate Extract of *Plectranthus amboinicus* (Lour.) Spreng. With Doxorubicin AgaIns HeLa Cell Lines

Poppy Anjelisa Z Hasibuan*, Rosidah

Faculty of Pharmacy, Universitas Sumatera Utara, Medan, 20155 Indonesia

Abstract

The aims of the study were to investigate the growth-inhibiting mediating effect of *Plectranthus amboinicus* (Lour.) Spreng. ethylacetate extract (PAE) in combination therapy with doxorubicin against HeLa cell lines, to analyzed the apoptotic induction and expression of cyclin D1, Bcl2 and COX-2 proteins of HeLa cell lines after treatment of PAE. The cytotoxicity effects were determined by using MTT [3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide] assay. The effect of apoptosis on HeLa cell lines were observed by flowcytometry assay in single dose of PAE. The expression of cyclin D1, Bcl2 and COX-2 proteins of HeLa cell lines after treatment of PAE were identified by using immunocytochemistry. The result showed that PAE had strong synergistic effect with doxorubicin against HeLa cells based on Combination Index analysis. PAE 28.66 µg/mL increases apoptotic induction. The PAE showed suppression of cyclin D1, Bcl2 and COX-2 expressions on HeLa cell lines. The results concluded that PAE could be a potential co-chemotherapeutic agent with doxorubicin on cervix cancer cells.

Keywords: *Plectranthus amboinicus*, doxorubicin, HeLa, combination

Introduction

The need for better cancer treatment is clear. In the developed world, roughly one in three people contracts cancer and around one in four of those die from the disease. The worldwide incidence of cancer is set to double from 10 to 20 million over the next two decades and the death rate will increase from 6 to 10 million1. New and more effective drug therapies are being developed due to the progress in the field of tumor biology and molecular genetics2. Conventional cancer therapies, including surgery, chemotherapy, and radiotherapy, as single modalities have a limited but important role in the overall treatment of most solid tumors3. Chemotherapy drugs are still have a lot of constrained problems, including not selective in killing cells because it affects the synthesis of nucleic acids and protein, so that normal body cells also die, side effect and costs of treatment are quite large. The use of doxorubicin as chemotherapeutic agent causes serious problems such as drug resistance and toxic effect on normal tissue which main pressing the immune system and heart toxicity4. Thus the strategies of cancer treatment using combined therapies or combined agents are considered more promising for higher efficacy, resulting in a better survival5. Indonesia is an area that has the potential diversity of plant species as medicinal plants. One of these medicinal plants is *Plectranthus amboinicus* (Lour.) Spreng. The previous studies had showed that the n-hexane, ethylacetate and ethanol extracts of *Plectranthus amboinicus*, (Lour.) Spreng. had antioxidant activities. The *n*-hexane and ethylacetate extracts exhibited strong cytotoxic effect on T47D breast cancer cells with IC_{50} value of 44.716 µg/mL and 37.61 µg/mL, respectively6. Antioxidant activity is usually correlated with cancer prevention. Thus, the extract has potential effect as a chemoprevention. The cytotoxic effect of *n*-hexane, ethylacetate and ethanol extracts were also examined on the HeLa cell lines. The study showed that the three extracts had cytotoxic effect on HeLa cells with IC_{50} values 76.322 µg/mL,143.291 µg/mL, and 88.997 µg/mL, respectively7. The aims of this research are to investigate cytotoxic activity of PAE-doxorubicin combination, to analyze apoptotic induction and the proteins expression of HeLa cell lines after single treatment of PAE.

Materials and Methods

Plant material

Fresh leaves of *Plectranthus amboinicus*, (Lour.) Spreng. was collected from Pematang Siar, Simalungun regency, Sumatera Utara province, Indonesia. *Plectranthus amboinicus*, (Lour.) Spreng. was identified in Research Centre for Biology, Indonesian Institute of Science, Bogor, and the voucher specimen was deposited in herbarium.

Preparation of Ethylacetate extract (PAE)

The air-dried and powdered leaves of *Plectranthus amboinicus*, (Lour.) Spreng. (1 kg) were repeatedly extracted by cold maceration with n-hexane (3x3 d, 7.5 L). The powder were dried in the air and extracted with

Author for Correspondence E-mail: poppyanjelisa94@gmail.com; poppy@usu.ac.id
ethylacetate (3x3 d, 7.5 L) at room temperature on a shake. The filtrate was collected, and then evaporated under reduced pressure by rotary evaporator (Heidolph VV-200) to obtain a viscous extract and the concentrated extract was dried by freeze dryer (Edwards).

chemicals: n-hexane and ethylacetate were purchased from Merck (Darmstadt, Germany), DMSO (Sigma Aldrich Chemie GmbH Germany), [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide] (MTT) (Sigma Chemical, St. Louis, MO), RPMI media and Phosphate Buffer Saline (FBS) 10% v/v (Gibco, Grand Island, NY, USA), Doxorubicin (Ebeewe).

Cytotoxicity assay
Cytotoxicity was determined by the MTT assay. Briefly, HeLa cells were plated at 10^5 cells/well in a 96-well plate. After incubation for 24 h at 37°C, cells were treated by Plecainthus amboinicus ethylacetate extract (PAE) with different concentration and incubated for 24 h. MTT solution was added to each well and further incubated for 4 h at 37°C, optical density was read with an ELISA reader at 595 nm.

Flow cytometry assay
Apoptosis assay
HeLa cells (5x10^4 cells/well) were seeded into 6-well plate and incubated for 24 h. After that, the cells were treated with PAE, and then incubated for 24 h. Both floating and adherent cells were collected in conical tube using trypsin 0.025%. The cells were washed thrice with cold PBS and centrifuged 2500 rpm for 5 min. The supernatant was separated, while the sediment was collected and fixed in cold 70% ethanol in PBS at -20°C for 2 h. The cells were washed thrice with cold PBS and centrifuged in 2500 rpm for 5 min. The supernatant was separated, while the sediment was collected and fixed in cold 70% ethanol in PBS at -20°C for 2 h. The cells were washed thrice with cold PBS and suspended in Annexin V kit added to sediment and suspended and incubated at 37°C for 30 min. The samples were analyzed using FACSscan flowcytometer.

Immunocytochemistry
HeLa cells (5x10^4 cells/well) were seeded on coverslips in 24-well plate and incubated for 24 h. After that, the cells were treated with PAE, and then incubated for 24 h. After incubation, the cells were washed with PBS, and then fixed with cold methanol at 4°C for 10 min. After that, the cells were washed with PBS and blocked in hydrogen peroxide blocking solution for 10 min at room temperature, incubated using primary antibody Bcl-2, cyclin D1, and COX-2 for 1 h, then washed thrice with PBS, then incubated with secondary antibody for 10 min. The cells were stained with DAPI for 5 min and then observed under fluorescence microscope.
were washed with PBS, then incubated in 3,3-diaminobenzidin (DAB) solution for 10 min, and washed with aquades. Afterward, the cells were counterstained with Mayer-Haematoxylin for 5 min, and the coverslips were taken and washed with aquades, and then immersed with xylol and ethanol 70%. Protein expression observed by light microscope (Nikon YS100). Cells that express a particular protein will provide the brown colour, while the cells that does not give a specific protein will provide blue colour.

RESULT AND DISCUSSION
This research were aimed to investigate the efficacy of PAE as a co-chemotherapy on doxorubicin treatment, to analyze apoptotic induction and proteins expression of HeLa cell lines after treatment of the extract. PAE, doxorubicin and their combination were investigated for their cytotoxicity effect on HeLa cell lines. MTT method was used to determine cell viability after incubation for 24 h, and the effect of combination was analyzed by Combination Index analysis. The Combination Index (CI) analysis is one of the most popular method for evaluating drug interactions in combination cancer chemotherapy. The method is used to categorize the effect of the combination which is synergistic, additive, or antagonistic. In every treatment (PAE and their combination) was showed the inhibition of cells growth. The IC$_{50}$ value of PAE 143.291 µg/mL and doxorubicin 1.8 µg/mL, and the combination was showed higher inhibitory effect if compare with single treatment. The optimum combination index (synergistic effect) was showed in ¼, 3/8, and ½ IC$_{50}$ value of PAE and 1/2 IC$_{50}$ value of doxorubicin (0.6 µg/mL) categorized with strong synergistic effect (CI <0.1). These effects supposed to be related to apoptotic induction and expression of some proteins. In this study, the apoptotic induction and expression of proteins were done at PAE single treatment, because we wanted to know its effect alone. The effect of its combination with doxorubicin need further study. Evaluation of apoptotic induction was performed by using flowcytometry assay with Annexin V. As shown in Figure 1, the cells in the upper and lower right quadrants represent late apoptotic/necrotic and early apoptotic cells, respectively. The percentage of cells treatment by PAE, in early apoptotic was 15.63%, in late apoptotic/early necrotic 8.21% and in late necrotic 5.27%. The observation of expression of apoptosis regulator protein Bcl2 and the protein that play important role in cell cycle, Cyclin D1 were conducted in HeLa cells by using PAE treatment. Expression of COX-2 was also done, because COX-2 may contribute to the development of human cancer. COX-2 derived prostaglandin E2 induces angiogenesis of tumor development by increasing of angiogenic factors, or decreased expression of anti-angiogenic factors, or a combination of both events. Effect of PAE on cyclin D1, Bcl2 and COX-2 expressions were evaluated using immunocytochemistry. Expression of cyclin D1, Bcl2 and COX-2 proteins are positive characterized by brown stained nuclei in the cells (Figure 2). The observation of apoptosis regulator protein Bcl1 was conducted in HeLa
cells by using PAE. Immunocytochemistry assay with Bcl2 antibody showed the expression of Bcl2 was decreased by PAE, therefore it is strengthen the apoptosis mechanism of PAE. One of secondary metabolite in Plectranthus amboinicus is ursolic acid. A Study reported that ursolic acid inhibit EGFR/MAPK and suppress Bcl2 expression on colon cancer cell by activation caspase 3 and 9. Thus, it is possibly that apoptosis induction of PAE occur through the same pathway, but we need further study. As seen in Figure 2, the untreated cells (control) showed high intensity for Bcl2, cyclin D1 and COX-2. A single treatment of PAE was decreased on Bcl2, cyclin D1 and COX-2 expression. Inhibition of cyclin D1 protein expression strengthen the mechanism of modulating cell cycle especially in inhibition of cell cycle on G0-G1 phase. Cyclin D1 is a cyclin that play important role in G0-G1 phase with established complex with CDK-4 or CDK-6 to controlled G1 to S phase transition. These results showed the same effect to T47D breast cancer cells. The PAE 8 µg/mL had the synergistic effect with doxorubicin against T47D breast cancer cells, induced apoptosis and cells accumulation at G1 phase, beside the expression of cyclin D1 and COX2 showed cell cycle arrest and metastasis inhibition of T47D cells line. However, the molecular mechanism of apoptosis induction, cell cycle modulation, and antiangiogenic regulation of PAE need to be explored more detail. Based on the results, we concluded that combination of ethylacetate extract of Plectranthus amboinicus (Lour.) Spreng. leaves and doxorubicin synergistically inhibit the HeLa cell lines. Based on the immunocytochemistry assays, the ethylacetate extract of Plectranthus amboinicus could perform as chemopreventive agent on cervical cancer.

ACKNOWLEDGEMENT
Authors would like to thank to DP2M DIKTI (Directorate of Higher Education) Ministry of Education and Culture, Indonesia, through “Hibah Fundamental” Research Grant 2015 for financial support in the study.

REFERENCES