KEMENTERIAN RISIET, TEKNOLOGI, DAN PENDIDIKAN TINGGI
UNIVERSITAS SUMATERA UTARA
LEMBAGA PENELITIAN DAN PENGABDIAN/
PELAYANAN KEPADAK MASYARAKAT
BIDANG PENELITIAN
Jalan Perpustakaan Nomor 3A, Kampus USU, Medan
Telp. 061-8211515, Fax. 061-8221202
Laman: penelitian.usu.ac.id; E-mail: lembagapenelitian.unus@yahoo.co.id

SURAT KETERANGAN PENELITIAN
Nomor: 34 /UN5.2.3.1/PPM/SK/2016

Ketua Lembaga Penelitian Universitas Sumatera Utara dengan ini menerangkan bahwa:

<table>
<thead>
<tr>
<th>No.</th>
<th>NAMA PENELITI/NIP</th>
<th>FAKULTAS</th>
<th>JABATAN DALAM PENELITIAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.</td>
<td>Dr. Ir. Zulhaidah Lubis, M.Kes NIP. 196205291989032001</td>
<td>Kesehatan</td>
<td>Anggota</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Masyarakat</td>
<td></td>
</tr>
</tbody>
</table>

Demikian surat keterangan ini diperbit untuk dapat dipergunakan sesuai dengan keperluannya.

Medan, 23 Februari 2016

Ketua,

[Signature]

Prof. Dr. Ir. Harmein Nasution, MSiE
NIP. 195205251980031003

PUSAT PENELITIAN:

- KAJIAN SUMBER HAYA ALAM & ENERGI
- KAJIAN NORMA & AKTIVITAS
- BERSIH
- TEGNOLOGI INDUSTRI & SDM
- HAK, KEADILAN & KESEJAHTERAAN
- KONSTITUSI & OTONOMI DAERAH
- KAJIAN WANITA
- UNIT PERS INDUSTRI & STANDARDISASI
- TAX DINNER
- PUSAT STUDIASAN
- PUSAT KAJIAN ANTI KORUPSI
LAPORAN PENELITIAN

ANALISIS KANDUNGAN INULIN DAN OLGOSAKARIDA PADA TEPUNG KOMPOSIT PISANG AWAK-BERAS KECAMBAH KEDELAI DENGAN METODE HPLC

Oleh :
Ernawati Nasution, SKM, Mkes
DR. Ir. Zulfaidah Lubis, Mkes

Dibuat oleh Dana PNPBP FKM USU
Dengan Surat Perjanjian No : 003572/UNS.2.1.10/FFP/2013
Tanggal 15 Mei 2013

FAKULTAS KESEHATAN MASYARAKAT
UNIVERSITAS SUMATERA UTARA
MEDAN
2013
LEMBAR PENGESAHAN LAPORAN PENELITIAN

1. Judul penelitian : Analisis Kandungan Inulin dan Oligosakarida Pada Tepung Komposit Pisang Aneka-Beras Kecambah Kedelai Dengan Metode HPLC
 a. Bidang ilmu : Resehatan Masyarakat
 b. Kategori Penelitian : Kelompok

2. Ketua peneliti
 a. Nama lengkap : Ernawati Nasution, SKM, MKes
 b. NIP : 19700212 199501 2 001
 c. Jenis Kelamin : Perempuan
 d. Pangkat / Golongan : Pembiaya Tk./IV b
 e. Jabatan : Lektor Kennal
 f. Fakultas / Departemen : Gizi Kesehatan Masyarakat

3. Jumlah Peneliti
 a. Nama Anggota 1 : Dr. Jumirah Apt., MKes
 b. Nama Anggota 2 : Dr. Ir. Zuhaidah Lubis, MKes

4. Inkasi Penelitian
 a. Loka Penelitian : Kota Medan

5. Jumlah Dana
 a. Dana Penelitian : Rp. 5.000.000,00 (Lima Juta Rupiah)

6. Sumber Dana
 a. PNBP FKWM USU TA. 2013

Medan, Agustus 2013
Ketua Peneliti:

Dr. Ir. Zuhaidah Lubis, MKes
NIP. 19700212 199501 2 001

Mengetahui/Menyetujui:
FKWM USU
Pembina, Dekan,

Ernawati Nasution, SKM, MKes
NIP. 19700212 199501 2 001

Mengetahui/Menyetujui:
LFQM USU
Ketua Bidang Penelitian,

Prof. Dr. Ir. Harunin Nasution, MSIE
NIP. 19520529 198001 1 005
Analisis Kandungan Inulin dan Oligosakarida Pada Tepung Komposit Pisang Awak-Beras-Kecambah Kedelai Dengan Metode HPLC

Ernawati Nasution, Jumriah, Zh. Iniudd Lubis

Departemen Gizi Kesehatan Masyarakat FKIP Univerisitas Syiah Kuala
Jl. Universitas No. 21 Kampus USU Medan 20155

ABSTRAK

Keberadaan inulin dalam bahan makanan menegangkan peranan penting bagi kesehatan. Khusus di bidang formula makanan bayi, peranan inulin dan oligosakarida telah dikenal sebagai zat probiotik atau bifidogenik, yang memiliki pengaruh positif terhadap imunitas bayi. Tujuan penelitian ini untuk mengelajari komposisi inulin dan oligosakarida yang terdapat pada pisang awak matang, tepung campuran pisang awak matang dengan tepung beras, tepung kacambah kedelai, serta tepung campuran (komposit) pisang awak matang-beras-kacambah kedelai. Penelitian ini adalah penelitian deskriptif yang dilakukan dengan pendekatan kuantitatif berdasarkan hasil analisis kandungan inulin, FOS dan GOS dengan metode HPLC di Laboratorium PT Sinarwaniindo Cetekok, Bogor, Jawa Barat. Dari hasil penelitian diketahui kandungan inulin, FOS dan GOS pada pisang awak matang yaitu inulin meningkat sebesar 3,74%, 7,69% dan 0,56%; pada tepung campuran pisang awak matang dengan tepung beras meningkat sebesar 5,14%, 2,99% dan 0,21%; pada tepung kacambah meningkat sebesar 3,83%, 1,96% dan 0,35%; dan pada tepung campuran pisang awak matang-beras-kacambah kedelai meningkat sebesar 3,53, 2,72% dan 0,35%. Perlu penelitian lanjutan untuk mengetahui efek pebiotik dan bifidogenik dari campuran tepung pisang awak matang dengan tepung beras dan kacambah kedelai sebagai bahan makanan pendamping ASI.

Kata kunci: pisang awak musak, kacambah kedelai, inulin, FOS, GOS.
KATA PENGANTAR

Dalam pelaksanaan penelitian ini, penulis banyak mendapatkan bantuan dari berbagai pihak baik dari milik maupun materi. terutama dari Bapak Rektor dan Pembantu Rektor, Pimpinan dan Staf Lembaga Penelitian USU, Pimpinan, Staf Pengajar, dan staf pegawai di FKM USU. Oleh karena itu, dalam kesempatan ini penulis mengucapkan terima kasih kepada semua pihak yang telah membantu sehingga penelitian dapat selesai pada waktunya.

Pada kesempatan ini penulis juga mengucapkan terima kasih kepada Pimpinan dan Staf PT Saraswanti Genetech khususnya yang berada di wilayah Kota Medan dan Bogor, yang telah membantu pelaksanaan kegiatan pengiriman sampel, analisis di laboratorium langsung pengiriman data.

Penulis menyadari masih ada kekurangan dalam penelitian laporan penelitian, untuk itu penulis mengharapkan kritik dan saran yang mungkin pihak dari semua pihak dalam rangka penyempurnaan laporan ini. Akhir kata penulis berharap laporan penelitian ini dapat bermanfaat bagi kita semua.

Medan, September 2013
Peneliti
Limawati Nazution
RINGKASAN

Analisis Kandungan Inulin dan Oligosakarida Pada Tepang Komposit Pisang Awak-Beras-Kecambah Kedelai Dengan Metode HPLC

Oleh:
Firawati Nasution, Juninur, Zulhidar Lubis

Pendahuluan;

Permasalahan keberlanjutan di Indonesia maupun di negara-negara lain di dunia masih di dominasi oleh penyakit infeksi atau menular dan penyakit non infeksi atau tidak menular. Baik penyakit infeksi maupun penyakit non infeksi, kedua nya dapat disebabkan karena pola makan yang tidak sehat dan seimbang.

Rumusan Permasalahan

Bagaimana komposisi inulin, fructooligosakarida (FOS) dan galaktosa oligosakarida (GOS) yang terkandung pada pisang, awak mutang, tepung campuran pisang awak mutang dengan tepung beras, tepung kecambah kedelai, dan tepung campuran (komposit) pisang awak mutang-beras-kecambah kedelai yang diperoleh sebagai bahan makanan pendamping ASI?

Tujuan Penelitian

Mengetahui komposisi inulin, fructooligosakarida (FOS) dan galaktosa oligosakarida (GOS) yang terkandung pada pisang, awak mutang, tepung campuran pisang awak mutang dengan tepung beras, tepung kecambah kedelai, serta tepung campuran (komposit) pisang awak mutang-beras-kecambah kedelai.
Manfaat Penelitian

Hasil penelitian ini diturunkan dapat memberikan informasi dan sumberan ilmiah terkait dengan pengembangan ilmu gizi kesehatan tentang prebiotik dan makanan bayi.

Metode Penelitian

Penelitian ini adalah penelitian deskriptif yang dilakukan dengan pendekatan kuantitatif berdasarkan hasil analisis kandungan imulin, FOS dan GOS dengan metode HPLC di Laboratorium PT Saraswati Indo Genotech, Bogor. Jawa Barat. Obek penelitian yang digunakan yaitu sejumlah bahan makanan yang akan digunakan sebagai bahan makanan pendamping ASI yang terdiri dari pisang awak matang segar, tepung campuran pisang awak matang dengan tepung beras (2:1) (formula A), tepung kacang kedelai (TKK), dan tepung campuran (komposisi) pisang awak matang-beras-kacang kedelai (formula A 65% dan TKK 35%).

Hasil dan Pembahasan

Dari hasil penelitian diperoleh konsentrat imulin pada pisang awak matang sebanyak 3.74%, konsentrat ini jauh lebih besar dibandingkan dengan konsentrat imulin menurut Van Loo (1995) dan Mostileh et al (1999) yaitu sebesar 0.7%. Hasil analisis kandungan imulin pada tepung campuran pisang awak matang dengan tepung beras diperoleh angka yang lebih rendah yakni 3.14% dibandingkan dengan kandungan imulin pada pisang awak matang segar (3.14%), tepung campuran (tepung komposisi) pisang awak matang tepung beras-bergerak kedelai (3.83%), akhir tetapi sedikit lebih tinggi dibandingkan dengan kandungan imulin yang diperoleh pada tepung beras-bergerak kedelai (3.13%).

Hasil penelitian menunjukkan bahwa kandungan FOS pada pisang awak matang (7.93%) lebih tinggi dibandingkan kandungan FOS yang terdapat pada pisang maupun buah-buahan lain yang ditemukan dalam hasil penelitian Burgers (1997). Kandungan FOS pada tepung campuran pisang awak matang dengan tepung beras (2:1) atau formula A (2.06%) sedikit lebih rendah dibandingkan dengan kandungan FOS yang diperoleh pada pisang awak matang segar (4.93%), demikian juga hal kandungan FOS yang diperoleh pada tepung campuran (komposisi) pisang awak matang-beras-kacang kedelai (3.72%) terbukti lebih rendah dibandingkan dengan kandungan FOS yang terdapat pada pisang awak matang segar, akan tetapi lebih tinggi dibandingkan dengan kandungan FOS yang diperoleh pada tepung formula A maupun tepung kacang kedelai (1.96%).

Kandungan galaktosa oleh sidaha (GOS) yang dielminasi pada pisang awak matang paling tinggi yaitu sebesar 0.56 % dibandingkan dengan kandungan GOS pada bahan makanan lain yang digunakan dalam penelitian ini. Sedangkan kandungan GOS yang paling sedikit terdapat pada tepung campuran pisang awak matang dan tepung beras (formula A) yaitu sebesar 0.21%, sementara kandungan
GOS pada tepung kecambah kedelai (TKK) dan tepung komposit (campuran formula A 62% dan TKK 38%) masing-masing sebesar 0,33% dan 0,16%.

Berdasarkan hasil penelitian ini, dapat dikatakan bahwa pisang awak matang dan hasil olahan tepungnya bersama dengan tepung beras dan tepung kecambah kedelai memiliki kandungan GOS tidak sebanyak kandungan ini dalam maupun FOS sebagaimana yang terdapat dalam bahan makanan tersebut. Namun, secara keseluruhan dari hasil penelitian ini, menunjukkan bahwa pisang awak matang maupun hasil olahan tepung pisang awak matang dengan tepung beras dan tepung kecambah kedelai mengandung induk FOS dan GOS yang memiliki sifat prebiotik dan bifidogenik dalam jumlah relative cukup baik, sehingga dapat dikatakan bahwa bahan-bahan makanan tersebut memiliki potensi bermanfaat dalam menyehatkan saluran pencernaan, sehingga mampu menjadi bahan makanan pendamping ASI.

Kesimpulan dan Saran

Dari hasil penelitian diperoleh kandungan induk FOS dan GOS pada pisang awak matang yaitu masing-masing sebesar 3,74%, 2,93% dan 0,56%, pada tepung campuran pisang awak matang dengan tepung beras masing-masing sebesar 3,14%, 2,06% dan 0,21%, pada tepung kecambah masing-masing sebesar 2,13%, 1,96% dan 0,33%, dan pada tepung campuran pisang awak matang-beras kecambah masing-masing sebesar 3,33%, 2,72% dan 0,36%.

Perlu penelitian lanjutan untuk mengukur efek prebiotik dan bifidogenik dari campuran tepung pisang awak matang dengan tepung beras dan kecambah kedelai sebagai bahan makanan pendamping ASI.
BAB I. PENDAHULUAN

1.1 Latar Belakang

Permasalahan kesihatan di Indonesia maupun di negara-negara lain di dunia masih di dominasi oleh penyakit infeksi atau menular dan penyakit non infeksi atau tidak menular. Baik penyakit infeksi maupun penyakit non infeksi, keduaunya dapat disebabkan karena pola makan yang tidak sehat dan seimbang. Konsumsi makanan yang memenuhi syarat gizi seimbang merupakan salah satu upaya pencegahan terhadap penyakit penyakit kekurangan makanan kekurangan gizi yang dapat terjadi pada berbagai kelompok masyarakat.

Kecenderungan pola makan masyarakat yang kurang menyukai atau mengonsumsi sedikit sekali jenis sayuran dan buah-buahan merupakan salah satu faktor penyebab terjadinya berbagai masalah gizi. Sayuran dan buah-buahan selain merupakan sumber berbagai jenis vitamin dan mineral, juga merupakan sumber berbagai senyawa penting lainnya seperti berbagai jenis serat baik serat larut maupun serat tidak larut dalam air.

Imulin merupakan sumber karbohidrat yang tidak dapat dicerna, yaitu suatu senyawa baku yang tidak hanya diambilkan pada beberapa tanaman sebagai simpanan karbohidrat, tetapi juga selain menjadi bugian dari makanan selari-beli bagi manusia selain beberapa alat Imulin terbukti dapat bekerja sumber buah-buahan dan serat yang secara ream digunakan, di antaranya: bawang merah, bawang putih, gandum, dan cahaya bunga sidikjadi, umbi dasilah dan pisang. Keberadaan Imulin dalam bahan makanan menyumbang penting bagi kesihatan.
Khusus di bidang formula makanan bayi, peranan inulin dan oligosakarida telah diketahui sebagai zat prebiotik atau bifidogenik, memiliki pengaruh positif terhadap mikroflora bayi. Inulin merupakan polisakarida dari unit-unit fruktosa, inulin berbentuk larut di dalam air dan tidak dapat di cerna oleh enzim enzim pencernaan namun difermentasikan mikroflora kolon komponen pangan yang berfungsi sebagai substrat mikroflora yang menggunakannya di dalam usus.

Prebiotik adalah senyawa yang digunakan untuk tumbuh dan berkembangnya bakteri non patogen di dalam tubuh manusia. Yang termasuk prebiotik antara lain adalah glukooligosakarida (GOS) yang pada umumnya diperoleh dari padi dan FOS atau fruktooligosakarida yang diperoleh dari polisakarida seperti inulin dari umbi dahlia. GOS atau FOS banyak ditambahkan pada susu formula bayi sebagai penuh komposisi.

Dari hasil penelitian Windo Purwanto (2011), sebanyak 83.5% pesan bayi di Desa Pulisk Gadeng Kecamatan Dewantara Kabupaten Aceh Utara diberikan pisang awak dan pada umumnya bayi yang diberikan pisang awak cenderung tidak mengalami diare. M. T. et al. (2010), menyatakan bahwa pisang mengandung sejumlah karbohidrat tidak dapat dicerna yang aciptensi sebagai prebiotik, dan menurut Van Loo et al. (1999) kandungan inulin dalam buah pisang sebesar 0,7%.

Kumar et al. (2012) menyatakan bahwa pisang merupakan makanan paling terbaik untuk diperkenalkan kepada bayi dan buah pisang masak dapat dijadikan makanan bayi yang sangat sehat dan sehat. Kandungan gizi pisang ungu kalsium, serat, kalium, magnezium, fosfor, selenium, besi, vitamin A, B2, B6, C, E, niasin, folat, dan asam pantotenat. Selain itu, pisang sangat mudah dicerna dan jarang
menyebabkan reaksi alergi. Pisang merupakan bagian dari BRAT diet, yang direkomendasikan (baca:) untuk penyembuhan mual-muntah dan masalah pencernaan, khususnya diare.

Penelitian yang dipublikasikan dalam *Digestive Disease and Sciences* menunjukkan bahwa banyak pisang dapat meningkatkan penyerapan zat gizi. Dalam studi tersebut, 37 bayi usia 5-12 bulan yang mengalami diare persisten selama minimal 14 hari diobati dengan zat herba basis beras yang salah satunya mengandung pisang hijau, pecinta apel atau beras saja. Pengobatan dengan pisang hijau dan pecinta apel mengakibatkan penurunan 50% berat kotoran bayi, yang menunjukkan bahwa penyerapan zat gizi pada bayi tersebut signifikan lebih baik (Kurniati et al., 2012).

Berdasarkan hasil-hasil penelitian sebagaimana dijelaskan, peneliti tertarik untuk mengamati kinerja beras dan oligosakarida yang terdapat dalam tepung kornis pisang awak, beras dan kecambah kedelai. Ketiga jenis bahan tersebut menarik untuk ditiru dalam pengubangan dengan pecessinya sebagai bahan untuk makanan pendamping ASI.

1.2 Permasalahan Penelitian

Bagaimana komposisi iniul dan oligosakarida yang terdapat pada pisang awak, beras dan kecambah kedelai dan tepung beras serta tepung kornis pisang kecima jenis bahan tersebut?
BAB 2. TINJAUAN PUSTAKA

2.1 Inulin dan Oligosakarida

Inulin adalah salah satu jenis fruktan atau polimer fruktoso (rambut gabungan monomer fruktosa) yang sebagian besar mengandung sekitar 35 unit fruktosa yang dihubungkan satu sama lain dalam rantai linier oleh karbon 2 dari salah satu fruktosa dihubungkan ke karbon 1 fruktosa sebelumnya (Salisbury, 1995). Inul ini dinamakan glukosa pada ujung awal rantai.

Inulin merupakan lalat yang digunakan dalam campuran heterogen polimer fruktosa yang digunakan dalam berbagai sektor kesehatan. Oligosakarida adalah subkelas inulin, terdiri dari polimer dengan tingkat polymerisasi ≤ 10. Inulin dan oligosakarida tidak diserabut dalam saluran cerna bagian atas oleh karena itu, inulin dan oligosakarida memiliki nilai kalori yang rendah. Kedua senyawa karbohidrat tersebut meninggalkan penurunan niasa bilis dan bakte.

Beberapa tingkat inulin konsentasi yang tersedia memiliki rasa netral, lembut dan digunakan untuk meningkatkan enzim, stabilitas, dan daya terimak makanan rendah lemak. Oligosakarida memenuhi rasa manis, menentang dan sangat bumi, dapat digunakan untuk fortifikasi makanan dengan cara tanpa mengurangi efek organoleptik, untuk meningkatkan rasa dan kemnian makanan rendah lemak dan ukuran makanan rendah lemak. Inulin dan oligosakarida menjadi beberapa efek fungsiut dan sita gizi, yang dapat digunakan untuk memenuhi kebutuhan nutrisi sehat bagi konsumen saat ini.

Inulin dan oligosakarida merupakan komposisi alami bahan makanan yang sering ditemukan dalam berbagai pencegahan dari sekian 80.000 jenis tanaman (Capita et al., 1999). Di Amerika, rata-rata konsumsi inulin dan oligosakarida sebesar 1-4 g setiap hari. Sammanas di Eropa rata-rata sebesar 3-10 g/hari (Yan Loo et al., 1999). Inulin dan oligosakarida yang
terdapat pada tanaman merupakan campuran karbohidrat dalam sejumlah satuan dan tanaman termasuk gandum, bawang, pisang, bawang putih dan sawi putih.

2.2 Peranan Inulin dan Oligosakarida dalam Kesehatan

Inulin adalah salah satu karbohidrat yang banyak sebagai prebiotik yang efektif di definisikan sebagai komponen pangan yang tidak dapat dicerna dan diperangang secara selektif pertumbuhan dan aktivitas bakteri yang menguntungkan di dalam saluran pencernaan (Robe et al., 1995).

Walaupun prebiotik secara alami sudah menjadi bagian dari diet manusia, namun penelitian-penelitian mengenai sifat fungsional prebiotik baru dilakukan dalam periode 20 tahun terakhir. Konsep prebiotik dikenalkan pada 1995 oleh Gibson dan Robe et al. Prebiotik di definisikan sebagai ingrediens pangan yang tidak dapat dicerna namun secara selektif memanusi pertumbuhan dan aktivitas mikroba yang menguntungkan dalam saluran pencernaan sehingga memberikan efek kesehatan bagi yang mengonsumsinya.

Target prebiotik adalah bakteri menguntungkan yang secara alami terdapat pada saluran pencernaan. Bakteri tersebut terutama adalah dari kelompok bifidobakteria dan bakteri asam laktat. Untuk dapat berfungsi, prebiotik harus dapat terhadi ke dalam pencernaan sebelum mencapai kolon dan usus besar dimana prebiotik akan berfungsi. Karena penggunaan prebiotik ditujukan untuk memantau pertumbuhan bifidobakteria dan laktobakteri, maka prebiotik yang ditujuk secara langsung ditujukan terhadap sel menggugah bakteri tersebut.

Oligosakarida dengan bentuk molekul rendah banyak menunjukkan prebiotik dalam pengembangan senyawa prebiotik. Oligosakarida ini tidak dicerna oleh hewan sehingga
dapat mencapai kolon dan menjadi substrat bagi bakteri yang menggunakannya. Keberadaan oligosakarida dalam halan makanan, antara lain: kodexi mengandung, raffinosa (trisakarida yang terbentuk dari satu molekul sukrosa terhubung dengan satu molekul galaktosa) sebanyak 0.1-1%, dan stakklosa (tetrasakarida yang terbentuk dari satu molekul sukrosa terhubung dengan dua molekul galaktosa) sebanyak 1,4-4,1%. Menurut Mitsou et al. (2011), pisang menyediakan sejumlah karbohidrat tidak dapat dicerna yang herpotensi sebagai prebiotik, dan dari hasil peacthiannya menyatakan bahwa konsumsi pisang setiap hari dapat menginduksi efek bifidogenesis pada orang yang sedent. Kandungan inulin dalam buah pisang sebesar 0.7% (Van Loo et al. 1993).

Menurut Gibson et al. (2004), ada tiga kriteria yang dipertolakan untuk manfaat efek prebiotik, yaitu: 1) Resistensi betamami terhadap keamanan lambung dan hidrolisis oleh enzim asam lambung dan 2) Dapat difermentasi oleh mikroorganisme dalam selama makanan alami dan 3) Secara selektif merangsang pertumbuhan dan atau aktivitas bakteri di usus yang dihubungkan dengan kemarahan dan keadaan yang lebih baik.

Resisten terhadap persehaan, tidak berarti harus sama sekali tidak bisa diterima karena harus menjamin bahwa jumlah yang cukup dapat mencapai kolon. Sementara itu, kriteria yang kriteria merupakan kriteria yang sulit untuk dipenuhi. Ingridian juga harus mematuhi dan memiliki sifat sensori yang disukai. Oligosakarida yang telah banyak digunakan sebagai prebiotik dan membutuhkan persyaratan di atas adalah GOS (Galakaroligosakarida, termasuk juga manzGOS) dan FOS (Fructooligosakarida, termasuk inulin) FOS dan inulin merupakan fruktan dengan
cerajat polimerisasi antara 2 sampai 70. FOS diperoleh antara lain dengan cara ekstraksi dari tanaman yang mengandung amilin dengan air panas atau dengan polimerisasi monomer fruktosa secara enzimatis, sedangkan GOS diperoleh dengan transglutamatisasi lactosa secara enzimatis.

2.3 Manfaat Prebiotik

Prebiotik tertentu apabila dikonsumsi dalam jumlah yang cukup telah menunjukkan manfaat kesehatan antara lain memperbaiki fungsi saluran pencernaan, memodulasi sistem imun, memperbaiki metabolisme lipid dan penyerapan mineral serta mengurangi risiko kanker. Prebiotik dapat melengkapi fungsi probiotik, yaitu bakteri hidup yang apabila dikonsumsi dalam jumlah yang cukup dapat memberikan

Sampai saat ini tidak ada tukar umum yang direkomendasikan untuk penggunaan prebiotik, namun dari hasil hasil penelitian menunjukkan bahwa FOS (Fruktooligosakarida) dengan dosis 5-8 gram/hari atau GOS (Galacto Oligosakarida) memberikan efek prebiotik pada orang dewasa.

2.4 Prebiotik dalam Produk Pangan.

Beberapa bentuk pangan diketahui mengandung senyawa prebiotik, misalnya asparagus, chicory, umbi dalhia, Jerusalem artichoke, bawang putih, oncom, gandum, oat, pisang. Alumunium untuk mengonsumsi efek prebiotik dari pangan tersebut, maka harus dikonsumsi dalam jumlah besar. Oleh karena itu, metode yang banyak digunakan dan lebih realistik adalah melakukas fortifikasi pangan dengan prebiotik dengan jumlah tertentu. Beberapa jenis pangan yang telah dikombinasikan dengan fortifikasi prebiotik adalah yoghurt, kisik, roti, dessert batu, mi, sas kuria,
spread, minuman, susu dan makanan bayi. Produk-produk tersebut telah banyak yang beredar di pasaran.

2.5 Prebiotik dalam Susu Bayi.

Oligosakarida merupakan salah satu komponen utama pada Air Susu Ibu, yang mengandung sekitar 10 g/l oligosakarida netral dan 1 g/l oligosakarida asam (Boehm and Stahl, 2003). Konsentrasi oligosakarida ini berubah sejalan dengan periode lactasi (menyusui), dengan konsentrasi oligosakarida terbesar terdapat dalam kolustrum. Komposisi oligosakarida ASI sangat kompleks dan telah diperkirakan terdapat lebih dari 100 struktur menyerupai oligosakarida terdapat pada ASI.

ASI atau susu formula mungkin membedak efek yang berbeda terhadap perkembangan mikroorganisme pada saluran pencernaan. Penelitian penelitian menunjukkan bahwa saluran pencernaan bayi yang diberi ASI lebih dikonsumsi oleh bifidobakteri dan laktobasilli dibandingkan dengan bayi yang diberi susu formula. Dominasi bifidobakteri dan laktobasilli ini dipercaya mengurangi risiko penyakit penyakit yang terkait dengan saluran pencernaan. Oligosakarida pada ASI disulkan berkontribusi terhadap perkembangan bifidobakteri dan laktobasilli pada bayi, sehingga ASI disebut memiliki efek bifidogenik.

Karena komposisi dan struktur oligosakarida pada ASI sangat kompleks, hingga saat ini dianecap masih belum layak untuk mereproduksi ASI. Namun demikian, riset-riiset terbarui menunjukkan adanya upaya upaya untuk mereproduksi efek biologi ASI. Sonor son prebiotik yang telah digunakan dalam penelitian penelitian untuk produk-produk bayi adalah GOS dan FOS. Studi klinis yang telah dilakukan membuktikan bahwa penambahan GOS atau FOS pada susu formula
menghasilkan efek bifidogenik yaitu menstimulir pertambahan bifidobakteria dan laktobasili pada saluran pencernaan bayi.

Studi yang dilakukan Moto et al. (2002) menunjukkan bahwa pemberian susu formula yang difortifikasi dengan campuran GOS/FOS dengan konsentrasi 0.4 g/100 ml atau 0.8 g/100 ml selama 28 hari menunjukkan peningkatan bifidobakteria dan laktobasili dalam feses. Peningkatan bifidobakteria ini tergantung dosis oligosakarida. Campuran inulin beantai pinjung (5-60 monomer) dengan GOS (2-7 monomer) dengan rasio 10:90% telah diterapkan ke dalam susu bayi di Eropa selama lebih dari 5 tahun (Veeremen, 2007). Studi klinis menunjukkan bahwa susu formula yang difortifikasi prebiotik ini secara nyata mempengaruhi komposisi mikroorganisme dalam feses menyerapkan komposisi mikroorganisme pada feses bayi yang diberi ASI, memperbaiki konsistensi feses, menurunkan permeabilitas usus, dan mengurangi risiko infeksi saluran pencernaan, salmonella pertafasan dan penyakit kulit pada bayi. Fortifikasi susu formula dengan campuran GOS dan FOS juga meningkatkan absorpsi kalium. Pemberian makanan suplemen yang difortifikasi dengan oligosakarida dengan dosis 4.5 ml/hari selama 6 minggu menunjukkan peningkatan jumlah bifidobakteria pada feses dan menurunkan Clostridia serta menurunkan feses dan mengurangi risiko penyakit saluran pencernaan (Sohelreza et al., 2006).

Hasil hasil perhelihan fortifikasi susu formula dengan prebiotik ini telah diaplikasikan oleh banyak industri. Walaupun penambahan prebiotik pada susu formula dapat memberikan berbagai manfaat dari ASI, namun karena kompleksitas
komposisi ASI dan terdapat bunga lain dari ASI, maka pemberian ASI tetap merupakan yang terbaik.

Dosis oligosakarida merupakan hal kunci dalam formulasi susu atau makanan bayi, karena pada dosis tinggi oligosakarida dapat memicu efek laksatif. Sejak tahun 2001 European Commission memperkenalkan penggunaan campuran 10% inulin dan 50% GOS dapat ditambahkan ke dalam susu bayi dengan koncentrasi maksimum 0.8 g/100 mL.

2.6 Prebiotik dalam MP-ASI.

Suatu prebiotik didefinisikan sebagai suatu komponen bahan makanan yang tidak dapat dicerna, yang memberikan manfaat bagi tubuh dengan cara stimulasi secara selektif terhadap pertumbuhan dan atau aktivitas satu atau sejumlah bakteri tertentu di dalam kolon (Gibson et al., 2004; Macfarlane et al., 2008, dalam Cho and Finniechiaro, 2010). Sedangkan definisi prebiotik menurut Kolberford (2007) adalah bahan selektif terfermentasi yang memungkinkan pertumbuhan spesifik, baik dalam komposisi dan atau kegiatan mikroflora pada selera tertentu yang memberikan manfaat meningkatkan kesehatan inang.

dalam mencegah diare pada bayi-bayi yang tinggal di suatu komunitas dalam kondisi terjadi webah penyakit saluran pencernaan dan penyakit infeksi lainnya. Akan tetapi, bukti-bukti awal menunjukkan bahwa prebiotik dapat membantu dalam mengurangi masalah iritasi usus, meningkatkan sistem kekebalan tubuh, menurunkan fungsi usus dan memperbaiki struktur saluran pencernaan seperti diare, kolitis, gastroenteritis, dan kolitis.

Menurut Veerenan (2007), dari hasil studi klinisnya selama lebih dari 5 tahun menyebutkan bahwa kombinasi campuran inulin rantai panjang (5-60 monomer) 10% dan galactooligosakarida (2-7 monomer) 90% yang ditambahkan ke dalam formula makanan bayi di Eropa memperlihatkan pengaruh yang signifikan terhadap komposisi flora pencernaan, memperbaiki komposisi flora, menurunkan pencerahan usus, mengurangi kejadian infeksi saluran pencernaan dan perusahaan serta dermatis alergi pada bayi. Konsumsi oligofructosa dalam makanan sapaan pada anak-anak, meningkatkan jumlah bifidobacteria dan menurunkan jumlah kolistida dalam feses sehingga mengontrol, ada kecenderungan feses lebih lunak dan kejadian demam serta gejala infeksi saluran pencernaan lebih sedikit. Campuran inulin rantai panjang dengan oligofructosa memiliki efek sinergi yaitu meningkatkan flora bifidus dari pengobatan dengan amoksilin. Berdasarkan hasil hasil penelitian yang tercantum dalam Cho and Fincochiaro (2010), beberapa efek positif dari fruktul, yaitu:

a. Efek terhadap komposisi mikroflora usus berupa efek bifidogenik.

b. Efek terhadap fungsi mukosa, yaitu: 1) meningkatkan berat feses melalui peningkatan biomassa bakteri, 2) fermentasi dan prokesi asam laktat rantai pendek, 3)
pertumbuhan dan diferensiasi sel-sel epitel, dan 4) efek terhadap imunitas atau kekebalan tubuh.

c. Efek terhadap penyakit saluran pencernaan, seperti infeksi diare, penyakit radang perut, gejala iritasi perut dan tumor kolon.

d. Effek terhadap absorpsi Mg, Cu, Se dan Zn.

e. Efek terhadap produksi vitamin, seperti biosint (vitamin B8), asam folat dan vitamin K.

f. Efek terhadap fungsi absorptive-productive, dalam mekanisme penyerapan Ca, menunjukkan pengaruh positif.
BAB 3. TUJUAN DAN MANFAAT PENELITIAN

3.1 Tujuan Penelitian.

Penelitian ini bertujuan untuk mengetahui komposisi imulin dan oligosakarida yang terdapat pada pisang awak, tepung campuran pisang awak mutsang dengan tepung beras, tepung kacang kedelai, serta campuran tepung pisang awak-beras-kacang kedelai.

3.2 Manfaat Penelitian.

Hasil penelitian ini diharapkan dapat memberikan informasi dan sumbangan ilmiah terkait dengan pengembangan ilmu gizi khususnya tentang prebiotik dan makanan bayi.
BAHAN METODE PENELITIAN

4.1 Jenis Penelitian.
Jenis penelitian ini adalah penelitian deskriptif yang dilakukan dengan pendekatan kuantitatif berdasarkan hasil analisis atau uji di laboratorium kimia.

4.2 Tempat dan Waktu Penelitian.
Penelitian ini dilakukan di Laboratorium Penelitian Fakultas Kesehatan Masyarakat Universitas Sumatera Utara Medan, dan untuk melakukan analisis kandungan minin, P0S dan GOS pada pisang awak matang, tepung campuran pisang awak matang, dengan tepung beras atau formula A (2:1), tepung kecambah kedelai (TKN), serta tepung campuran (compost) pisang awak matang, tepung beras (Formula A 65%) dan tepung kecambah kedelai (35%) dilakukan di Laboratorium PT Sarawati Bogor. Waktu penelitian yang dibutuhkan 6 bulan.

4.3 Objek Penelitian.
Objek penelitian ini adalah pisang awak matang segar, tepung campuran pisang awak matang dengan tepung beras (2:1) atau formula A, tepung kecambah kedelai, serta tepung campuran (compost) pisang awak matang, tepung beras (Formula A 65%) dan tepung kecambah kedelai (35%).

4.4 Alat dan Bahan.
Alat-alat yang digunakan dalam penelitian ini meliputi alat-alat untuk pengolahan tepung komposit dan alat-alat analisis imulir dan oligosakarida di:
laboratorium. Jenis alat-alat tersebut yaitu pisau, talenan, baskom, blender, pengaduk kayu, oven dryer, timbangan, erlenmeyer, gelas ukur, beaker glass, dan unit HPLC.

Bahan yang digunakan yaitu pisang asu, apel musak, tepung beras, kedelai, dan bahan kainio.

4.5 Prosedur Analisis Penentuan Inulin dan Oligosakarida dengan Metode HPLC (AOAC, 1995)

Kadar inulin diukur dengan menggunakan metode HPLC. Metode ini meliputi pembuatan larutan standar, ekstraksi sampel dan hidrolisis sampel. Sampel yang telah diekstraksi dan dihidrolisis dilakukan konsentrasi inulin dengan menambahkannya dengan kurva larutan standar. Larutan standar dibuat dengan merimbangkan fruktosa sebagai standar sebanyak 2 mg.

Fruktosa dimasukkan dalam labu tatah 100 ml dan diepikan dengan menggunakan alat alat labu ditencok hingga homogen. Larutan tersebut dijadikan larutan induk 1000 ppm kemudian buah buah konsentrasi 5 ppm, 25 ppm, 50 ppm dengan masing-masing ditambahkan standar konsentrasi 50 ppm. Saring dengan filter dan syringa kan ke dalam vial untuk dimasukkan pada HPLC.

Proses ekstraksi sampel dilakukan dengan cara menghomogenkan sampel yang kemudian dimasukkan ke dalam gelas pipet. Tambahkan air panas sebanyak 40 ml dan tambahkan KOH 0.05 N atau HCl 0.05 N hingga pH sekitar 6.5-8. Larutan tersebut kemudian dimasukkan ke dalam labu tatah 100 ml dipanaskan 85ºC dan diaduk. Larutan tersebut didinginkan dan kemudian dipindahkan ke dalam gelas pipet untuk dilakukan met. Setelah itu cekkan hingga mencapai 1% frukt.
Langkah berikutnya adalah hidrolisis sampel hasil ekstraksi dengan menggunakan enzim inulinase. Mula-mula diambil 15 g sampel (A), kemudian ditambah 15 g buffer asetat hingga memiliki pH 4.5. Diambilkan amiloglukosidase sebanyak 25 mg dan diinkubasi selama 30 menit pada suhu 60°C, lalu ditambah (B). Sebanyak 10 g sampel ditambah dan diinkubasi enzim inulinase. Sampel tersebut diinkubasi kembali pada suhu 60°C selama 30 menit. Blank diinginkan, lalu ditambah (C). Hasil ekstraksi A, B, dan C mingking mesing diencerkan, diinkubasi interal standar (glukoheposa) 20 ppm, disaring, lalu diinjeksiakan pada HPLC.

4.6 Metode Analisis Data.

Metode analisis data yang digunakan dalam penelitian ini adalah analisis deskriptif berdasarkan hasil pengukuran terhadap kadar inulin dan oligosakarida pada pisang awak masak, kecambah kedelai, tepung campuran pisang awak malang dan tepung beras, dan tepung kompos dari ketigajenis bahan tersebut.
BAB 5. HASIL PENELITIAN

Kandungan inulin pada pisang awak matang dan tepung komposit pisang awak matang-beras-kecambah kedelai yang diperoleh dari hasil analisis menggunakan metode HPLC ditemukan pada tabel 5.1.

Tabel 5.1. Kandungan Inulin Pisang Awak Matang dan Tepung Komposit Pisang Awak Matang-Beras-Kecambah Kedelai.

<table>
<thead>
<tr>
<th>No</th>
<th>Jenis Bahan Makzem</th>
<th>Kandungan Inulin (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pisang awak matang</td>
<td>3.74</td>
</tr>
<tr>
<td>2</td>
<td>Tepung campuran pisang awak matang dan tepung beras (Formula A)</td>
<td>3.14</td>
</tr>
<tr>
<td>3</td>
<td>Tepung kecambah kedelai (TKK)</td>
<td>3.13</td>
</tr>
<tr>
<td>4</td>
<td>Tepung komposit (Formula A 65% + TkK 35%)</td>
<td>3.51</td>
</tr>
</tbody>
</table>

Pada tabel 5.1 memperlihatkan bahwa kandungan inulin pada pisang awak matang lebih tinggi dari pada kandungan inulin yang diperoleh pada tepung kecambah kedelai, meskipun tepung campuran pisang awak matang dan tepung beras.

5.2. Hasil Analisis Kandungan FOS pada Pisang Awak Matang dan Tepung Komposit Pisang Awak Matang-Beras-Kecambah Kedelai.

Kandungan FOS pada pisang awak matang dan tepung komposit pisang awak matang-beras-kecambah kedelai yang diperoleh dari hasil analisis menggunakan metode HPLC ditemukan pada tabel 5.2. Dari hasil analisis menunjukkan bahwa kandungan FOS terbanyak ditemukan dalam pisang awak matang, dibandingkan dengan basis, hal ini tepung campuran maupun tepung kecambah kedelai.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis Bahan Makanan</th>
<th>Kandungan FOS (g%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pisang awak matang</td>
<td>2.95</td>
</tr>
<tr>
<td>2.</td>
<td>Tepung campuran pisang awak matang dan tepung beras (Formula A)</td>
<td>3.06</td>
</tr>
<tr>
<td>3.</td>
<td>Tepung kecambah kedelai (TKK)</td>
<td>1.96</td>
</tr>
<tr>
<td>4.</td>
<td>Tepung komposit (Formula A 65% + TKK 35%)</td>
<td>2.72</td>
</tr>
</tbody>
</table>

Kandungan GOS pada pisang awak matang dan tepung komposit pisang awak matang-beras-kecambah kedelai yang ciperelah dan hasil analisis menggunakan metode HPLC ditunjukkan pada tabel 5.3.

<table>
<thead>
<tr>
<th>No.</th>
<th>Jenis Bahan Makanan</th>
<th>Kandungan GOS (g%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pisang awak matang</td>
<td>0.56</td>
</tr>
<tr>
<td>2.</td>
<td>Tepung campuran pisang awak matang dan tepung beras (Formula A)</td>
<td>0.21</td>
</tr>
<tr>
<td>3.</td>
<td>Tepung kecambah kedelai (TKK)</td>
<td>0.23</td>
</tr>
<tr>
<td>4.</td>
<td>Tepung komposit (Formula A 65% + TKK 35%)</td>
<td>0.36</td>
</tr>
</tbody>
</table>
Dari hasil analisis menunjukkan bahwa kandungan GOS terbanyak juga ditemukan dalam pisang awak matang, dibandingkan dengan hasil olahan tepung campuran maupun tepung kecambah kedelai.
BAB 6. PEMBAHASAN

Dari hasil penelitian ini diperoleh komposisi inulin pada pisang awak matang sebanyak 3,74%. Komposisi ini jauh lebih besar dibandingkan dengan komposisi inulin menurut Van Loo (1995) dan Moshfegh et al (1999) yakni sebesar 0,7%. Hasil analisis kandungan inulin pada tepung campuran pisang awak matang dengan tepung beras diperoleh angka yang lebih rendah yakni 3,14% dibandingkan dengan kandungan inulin pada pisang awak matang segar (3,74%) maupun tepung campuran (tepung komposit) pisang awak matang-tepung beras-tepung kecambah kedelai (3,53%), akan tetapi sedikit lebih tinggi dibandingkan dengan kandungan inulin yang diperoleh pada tepung kecambah kedelai (3,13%).

Berdasarkan hasil temuan kandungan inulin yang terdapat pada pisang awak matang, semakin memperkuat dugaan bahwa pemberian pisang awak matang sebagai

6.2. Kandungan Fruktol Oligo Sakarida (FOS) Pisang Awak Matang dan Tepung Komposit Pisang Awak Matang-Beras-Kecambah Kedelai

Fruktol oligosakarida (FOS) merupakan anggota kelompok oligosakarida yang disosiasi dari tanaman. FOS terdiri dari tiga sampai sebanyak unit monosakarida yang terhubung oleh ikatan α-glycosidic between terminal fruktosa and glukosa (Tannere, Marshall and Robinson, 1995). Derajat polimerisasi (DP), ditentukan oleh jumlah unit monosakarida, yang digunakan untuk menentukan klasifikasi molekul FOS dan inulin, yaitu FOS memiliki DP <10 dan inulin memiliki DP antara 2-60 (Spiegel et al, 1994).

FOS terdapat dalam beberapa bahan makanan seperti pisang, bawang putih, bawang merah, smat, gandum, asparagus, artichoke, tosk, inulin, beras, gula coklat.
harley, tritienke, beer, kol, chicory, burdock, bit, apel, kat, dll. Kandungan FOS dalam bahan makanan antara lain pada buah merah (2,8%), tomat (1,8%), beras (0,7%), pisang (0,5%) dan bawang putih (0,2%) (Borges, 1991).

Berdasarkan hasil penelitian yang diperoleh pada tabel 5.2, terlihat bahwa kandungan FOS pada pisang awak mataang (2,93%) lebih tinggi dibandingkan kandungan FOS yang terdapat pada pisang manis dan bahan makanan lain yang ditemukan dalam hasil penelitian Borges (1997). Kandungan FOS pada tepung campuran: pisang awak mataang dengan tepung beras (2:1) atau formula A (2,06%) sedikit lebih rendah dibandingkan dengan kandungan FOS yang diperoleh pada pisang awak mataang segar (2,93%), demikian juga hal kandungan FOS yang diperoleh pada tepung campuran (komposit) pisang awak mataang-beras kezimah kedelai (2,92%) terbukti lebih rendah dibandingkan dengan kandungan FOS yang terdapat pada pisang awak mataang segar, akan tetapi lebih tinggi dibandingkan dengan kandungan FOS yang diperoleh pada tepung formula A manis tepung kezimah kedelai (1,96%).

Berdasarkan hasil temuan pada penelitian ini, menunjukkan bahwa pisang awak mataang maupun hasil olahan tepung pisang awak mataang dengan tepung beras dan tepung kezimah kedelai mengandung senyawa FOS dalam jumlah relatif cukup baik. Selanjutnya dapat diisahkan bahwa bahan-bahan makanan tersebut memiliki potensi untuk bahan pelengkap yang berguna untuk meningkatkan sekresi senyawa pencernaan, sehingga dapat dipandang sebagai makanan pendamping ASI.

Hal ini dicerminkan pada beberapa studi yang menggunakan cairan yang mengandung FOS, antara lain meningkatkan persyarapan laktasi dan kemandiran
(Perera and Gibson, 2002; Cuninclay, Demigne and Rayssiguier, 2003), karena sifatnya yang tidak dapat dicerna dalam saluran pencernaan akan membentuk kecenderungan meningkatkan pertumbuhan serta memperkuat bakteri spesifik di saluran pencernaan (Gibson and Roberfroid, 1995). Bifidobacteria akan menghasilkan \(\beta \)-fructosidase, yaitu enzim yang dapat merespon untuk hidrolisis FOS (Roberfroid, 1993). Mekanisme kerja FOS dalam menghambat terjadinya patogen baik yang berasal dari luar tubuh (eksogen) maupun yang berasal dari dalam tubuh (endogen) dapat dijelaskan melalui penurunan pH lumen usus sebagai konsekuensi dari pembentukan asam lemak rami dan asid fentinasi FOS (Wang and Gibson, 1993; Roberfroid, 1995). Penurunan dalam sejumlah bakteri patogen seperti E. coli, Clostridium, Streptococcus faecalis dan Proteus akan menurunkan racun metabolit antara lain ammoxid, indole, fenol, dan nitrosamin (Cummings, Macfarlane and English, 2001).

Untuk meningkatkan kecepatan flora usus, telah ditetapkan jumlah FOS yang dibutuhkan antara 2 g sampai 2.5 g per hari (Borges, 1997). Dosis minimum FOS yang dapat menginduksi diare adalah sebesar 44 g bagi laki-laki dewasa dan 49 g bagi wanita dewasa (Spiegel et al., 1994; Costa and Wainberg, 1997).

Galaktosa oligo sakarida (GOS) juga termasuk dalam oligosakarida yang tidak dapat dicerna, yang terbentuk oleh molekul-molekul galaktosa dalam bentuk terikat sebagai ikosa, terdiri dari tiga (3) sampai belas (16) sakarida dengan 2-5 unit
galaktosa dan terlubung oleh ikatan beta (3). Sama halnya dengan inulin dan FOS, GOS juga merupakan senyawa yang memiliki efek bifidogenik dan dimasukkan ke dalam kelompok prebiotik.

Anjur untuk mementingak nukleotida flora usus, yaitu pemberian GOS sebanyak 2 g sampai 3 g per hari (Catanis and Flamen, 1999). GOS tidak memiliki efek negatif, dan hanya diketahui akan menambahkan efek diare jika mengkonsumsi GOS secara berlebihan yang dijelaskan sekitar 0.3 g/kg sampai 0.4 g/kg berat badan.

Dari hasil penelitian mengenai kandungan galakto oligo sakarida (GOS) pada pisang awak matang dan tepung komposit pisang awak matang-beras-kecambah kedelai, yang diuraikan oleh tabel 5.3, dapat diketahui bahwa kandungan GOS yang paling tinggi terdapat pada pisang awak matang segar yaitu sebesar 0.86%.

Sedangkan kandungan GOS yang paling sedikit terdapat pada tepung campuran pisang awak matang dan tepung beras (formula A) yaitu sebesar 0.21%. Hasil penelitian kandungan GOS pada tepung kecambah kedelai (TKK) dan tepung komposit (formula A dan TKK) seperti yang ditunjukkan pada tabel 5.3 adalah sebesar 0.33% dan 0.36%.

Berdasarkan hasil penelitian ini, dapat dikatakan bahwa pisang awak matang dan hasil olahan tepungnya berasa dengan tepung beras dan tepung kecambah kedelai memiliki kandungan GOS tidak sebanyak inulin manapun FOS sebagaimana yang terdapat dalam bahan makanan tersebut.

Dosis GOS sebesar 0.8 g/kg berat badan dianggap paling sesuai biji dibandingkan dengan formula placebo (barbosis maltodextrin). Comparasi GOS dan FOS memiliki peranah terhadap peran dalam pertumbuhan bifidobakteri dan...
BAB 7. KESIMPULAN DAN SARAN

7.1. Kesimpulan

Derdasarkan hasil penelitian dan uraian pembahasan, maka dapat disimpulkan bahwa berdasarkan kandungan inulin, FOS dan GOS pada pisang awak matang yaitu masing-masing sebesar 3.74%, 2.93% dan 0,56%; pada tepung campuran pisang awak matang dengan tepung beras masing-masing sebesar 3,14%, 2,06% dan 0,21%; pada tepung kecambah masing-masing sebesar 3,13%, 1,96% dan 0,33%; dan pada tepung campuran pisang awak matang-beras-kecambah kedelai masing-masing sebesar 3,53%, 2,72% dan 0,36%, maka bahan-bahan makanan tersebut memiliki kandungan prebiotik atau bersifat bifidogenik yang sangat diperlukan dalam makanan bayi atau MP-ASI.

7.2. Saran

Perlu penelitian lanjutan untuk mengetahui efek prebiotik dan bifidogenik dari campuran tepung pisang awak matang dengan tepung beras dan kecambah kedelai sebagai bahan makanan pendamping ASI.
RESULT OF ANALYSIS

I. Number / Nomor
1.1. Order No. / No. Order: SIG.Mrk.NG.VIII.2013.8145

II. Principal / Pelanggan
2.1. Name / Name: Dr. Jumirah, Apt., M.kes
2.2. Address / Alamat: FKIM USU, Jl. Universitas No. 21
 Komplek USU Moden 20155
 Prop. Sumut Medan
2.3. Phone / Telepon:
2.4. Contact Person / Person Pongkrong: Dr. Jumirah, Apt., M.kes

III. Sample / Contoh Uji
3.1. Sample Name / Nama: Pisang Awak
3.2. Date of Received / Diterima: August 26, 2013
3.3. Date of Analysis / Tanggal Uji: August 27, 2013 – September 9, 2013
3.4. Type of Analysis / Jenis Uji: Iin. FOS, GOS, Niassin, Asam pantotenat

IV. Result / Hasil Uji

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Unit</th>
<th>Result</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Inulin</td>
<td>%</td>
<td>3.74</td>
<td>HPLC</td>
</tr>
<tr>
<td>2</td>
<td>FOS</td>
<td>%</td>
<td>2.93</td>
<td>HPLC</td>
</tr>
<tr>
<td>3</td>
<td>GOS</td>
<td>%</td>
<td>0.56</td>
<td>HPLC</td>
</tr>
<tr>
<td>4</td>
<td>Niassin</td>
<td>mg/100g</td>
<td>Not detected</td>
<td>HPLC</td>
</tr>
<tr>
<td>5</td>
<td>Asam pantotenat</td>
<td>mg/100g</td>
<td>Not detected</td>
<td>HPLC</td>
</tr>
</tbody>
</table>

Bogor, September 9, 2013
PT Saraswanti Indo Genetik

Dwi Yuliarto Laksono, S,Si
Manager Laboratorium
RESULT OF ANALYSIS
Laporan Hasil Pengujian
No. SIG I HP IX 2013 32503

I. Number / Nomor
1.1. Order No. / No. Order : SIG Mark NG VII 2013 8148

II. Principal / Pelanggan
2.1. Name / Nama : Dra. Jumirah, A., M.ikes
2.2. Address / Alamat : RKM USU, Jl. Universitas No. 21
Prop. Sumatera Utara
Kampus USU Medan 20155
2.3. Phone / Telepon :
2.4. Contact Person / Personil Pemفف
RESULT OF ANALYSIS
Laporan Hasil Pengujian
No. SIG.Mak.NG.VII.2013.8149

I. Number / Nomor
1.1 Order No. / No. Order : SIG.Mak.NG.VII.2013.8149

II. Prinsip / Pelanggan
2.1. Name / Name : Dra. Jumirah, Apt., Mikes
2.2. Address / Alamat : PKM USU, Jl. Universitas No. 21
Kampus USU Medan 20155
Prop. Sumatera Utara

2.3. Phone / Telepon :
2.4. Contact Person / Personil Penghubung : Dr. Jumirah, Apt., Mikes

III. Sample / Contoh Uji
3.1. Sample Name / Nama : FB1
3.2. Date of Received / Diterima : August 26, 2013
3.3. Date of Analysis / Tanggal Uji : August 27, 2013 – September 6, 2013
3.4. Type of Analysis / Jenis Uji : inulin, FOS, GOS, Vitamin, Iodium

III. Result / Hasil Uji

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Unit</th>
<th>Result</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>inulin</td>
<td>%</td>
<td>3.53</td>
<td>HPLC</td>
</tr>
<tr>
<td>2</td>
<td>FOS</td>
<td>%</td>
<td>2.72</td>
<td>HPLC</td>
</tr>
<tr>
<td>3</td>
<td>GOS</td>
<td>%</td>
<td>0.36</td>
<td>HPLC</td>
</tr>
<tr>
<td>4</td>
<td>Vitamin B12</td>
<td>mcg/100g</td>
<td>1.02</td>
<td>HPLC</td>
</tr>
<tr>
<td>5</td>
<td>Niasin</td>
<td>mg/100g</td>
<td>Not detected</td>
<td>HPLC</td>
</tr>
<tr>
<td>6</td>
<td>Asam pantotenol</td>
<td>mg/100g</td>
<td>Not detected</td>
<td>HPLC</td>
</tr>
<tr>
<td>7</td>
<td>Iodium</td>
<td>mcg/100g</td>
<td>0.56</td>
<td>HPLC</td>
</tr>
</tbody>
</table>

Bogor, September 5, 2013
PT Sriwijaya Indo Gontor

Dwi Yulianto Laksono, S.Si
Manager Laboratorium
RESULT OF ANALYSIS

Laporan Hasil Pengujian
No: SIG.LHP.VII.2013.8148

I. Number / Nomor
 1. Order No / No. Order : SIG.LHP.VII.2013.8148

II. Pimpinan / Pelangganan
 2.1. Name / Nama
 2.2. Address / Alamat
 : FKM USU, Jl. Universitas No. 21
 : Campus USU Medan 20155
 : Prop. Sumatera Utara

III. Sample / Contoh Uji
 3.1. Sample Name / Nama
 3.2. Date of Received / Diterima
 3.3. Date of Analysis / Tanggal Uji
 3.4. Type of Analysis / Jenis Uji
 : TP (Tepung Pisang Awak)
 : August 26, 2013
 : Starch, FOS, GOS, Vitamin, Iodine

 iii. Result / Hasil Uji

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameter</th>
<th>Unit</th>
<th>Result</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Starch</td>
<td>%</td>
<td>3.14</td>
<td>HPLC</td>
</tr>
<tr>
<td>2</td>
<td>FOS</td>
<td>%</td>
<td>2.06</td>
<td>HPLC</td>
</tr>
<tr>
<td>3</td>
<td>GOS</td>
<td>%</td>
<td>0.21</td>
<td>HPLC</td>
</tr>
<tr>
<td>4</td>
<td>Vitamin D12</td>
<td>mg / 100 g</td>
<td>1.99</td>
<td>HPLC</td>
</tr>
<tr>
<td>5</td>
<td>Nissin</td>
<td>mg / 100 g</td>
<td>ND</td>
<td>HPLC</td>
</tr>
<tr>
<td>6</td>
<td>Asam pantoteral</td>
<td>mg / 120 g</td>
<td>ND</td>
<td>HPLC</td>
</tr>
<tr>
<td>7</td>
<td>Iodine</td>
<td>mg / 100 g</td>
<td>42.74</td>
<td>HPLC</td>
</tr>
</tbody>
</table>

Bogor, September 9, 2013
PT Siawadi Indo Biotech

Dwi Yulianto Laksono, S.Si
Monjori: Laboratorium
LAMPIRAN

PERSONALIA PENELITI

Ketua Peneliti:

a. Nama Lengkap dan Gelar : Enawati Nastiti, SKM, MKes
b. Jenis Kelamin : Perempuan
c. NIP : 19700212 1995012001
d. Pangkat/Golongan : Pembina A/Wa
e. Jabatan Fungsional : Lektor Kepala
f. Waktu Penelitian : 5 jam/ minggu

Anggota Peneliti 1:

b. Jenis Kelamin : Perempuan
c. NIP : 19570311 1988112001
d. Pangkat/Golongan : Pembina TkI/IVb
e. Jabatan Fungsional : Lektor Kepala
f. Waktu Penelitian : 5 jam/ minggu

Anggota Peneliti 2:

a. Nama Lengkap dan Gelar : Dr. Ir. Zolhaidi Lubis, MKes
b. Jenis Kelamin : Perempuan
c. NIP : 19620529 1989032001
d. Pangkat/Golongan : Pembina IV a
e. Jabatan Fungsional : Lektor Kepala
f. Waktu Penelitian : 5 jam/ minggu
DAFTAR HADIR

SEMINAR HASIL PENEITIAN

<table>
<thead>
<tr>
<th>No.</th>
<th>Nama</th>
<th>Peran</th>
<th>T. Tangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Ernawati Mt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Jumirah</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Eth Sutaryati</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Naya Fitria, SKM, MKes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Lukita N. S. Ceo, MKes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>Feri Ardeni</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Juanita</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Halindo Sari Lubis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>Harmatowati</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Milindita Lubis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jadwal:
- **Ketua:** Ernawati Nasution, SKM, MKes
- **Tanggal:** Jum'at, 23 Agustus 2013
- **Waktu:** 15.00 Wib s/d selesai
- **Tempat:** Ruang UPR FKM USU

Signature:
- Kepala FKM USU
- Pembantu Dekan I.

Pengantar:
- Mahasat, MKes