BAB 2
LANDASAN TEORI

2.1 Sistem Biometrika

2.1.1 Pengertian Sistem Biometrika

Sistem biometrika merupakan teknologi pengenalan diri dengan menggunakan bagian tubuh atau prilaku manusia (Putra, 2009). Sidik jari dan tanda tangan merupakan contoh biometrika berdasarkan bagian tubuh dan tingkah laku manusia yang diaplikasikan pada teknologi biometrika yang telah berkembang pesat dewasa ini.

Secara umum terdapat dua model sistem biometrika, yaitu:

1) Sistem Verifikasi
 Sistem verifikasi bertujuan untuk menerima atau menolak identitas yang telah diklaim oleh seseorang.
2) Sistem Identifikasi

Sistem identifikasi bertujuan untuk memecahkan identitas seseorang. Pengguna tidak dapat memberikan klaim atau memberikan klaim negatif untuk identitas yang telah terdaftar.

Penggunaan biometrika untuk sistem pengenalan memiliki beberapa keunggulan dibanding sistem konvensional (penggunaan password, PIN, kartu, dan kunci), di antaranya (Putra, 2010):

1) Non-repudiation: suatu sistem yang menggunakan teknologi biometrika untuk melakukan suatu akses, penggunaanya tidak akan menyangkal bahwa pengguna tidak melakukan akses atau transaksi. Hal ini berbeda dengan penggunaan password atau PIN. Pengguna masih dapat menyangkal atas transaksi yang dilakukannya, karena PIN atau password dapat digunakan bersama-sama.

2) Keamanan (security): sistem berbasis password dapat menggunakan metode atau algoritma brute force, sedangkan sistem biometrika tidak menggunakan algoritma tersebut, karena sistem biometrika membutuhkan kehadiran pengguna secara langsung pada proses pengenalan.

3) Penyaringan (screening): proses penyaringan untuk mengatasi seseorang yang menggunakan banyak identitas, seperti teroris yang dapat menggunakan lebih dari satu paspor untuk memasuki satu negara. Sebelum menambahkan identitas seseorang ke sistem, perlu dipastikan terlebih dahulu bahwa identitas orang tersebut belum terdaftar sebelumnya. Untuk mengatasi masalah tersebut maka diperlukan proses penyaringan identitas yang mana sistem konvensional tidak dapat melakukannya. Biometrika mampu menghasilkan atau menyaring beberapa informasi sidik jari atau wajah yang mirip dengan sidik jari atau wajah yang dicari.

Dengan menggunakan teknologi sistem biometrika jenis fingerprint merupakan perkembangan untuk security yang bisa diandalkan untuk masa yang akan
datang, seiring banyaknya pemalsuan data yang dilakukan dengan bantuan teknologi. Berikut ini adalah contoh pengaplikasian teknologi sistem biometrika dengan menggunakan biometrika *fingerprint*, yang dijelaskan dalam arsitektur sistem biometrika seperti pada gambar 2.1.

![Diagram Biometrik](image)

Gambar 2.1 Arsitektur Sistem Biometrika

(Sumber: Chikkerur, 2005)

Sistem biometrika memiliki 5 modul dasar berdasarkan pada gambar 2.1 di atas antara lain sebagai berikut:

1. Modul sensor (*sensor module*), merupakan modul untuk mengumpulkan data atau akuisisi data, yang mengambil data biometrika pengguna atau mengolahnya menjadi bentuk yang layak untuk proses pengolahan berikutnya.

2. Modul pemisahan ciri (*feature extraction module*), yaitu modul untuk menghasilkan ciri unik dari biometrika yang digunakan yang dapat membedakan satu orang dengan yang lain. Modul ini akan mengubah data
menjadi modul sensor ke dalam representasi matematika yang diperlukan oleh modul pencocokan.

3) Modul pencocokan (*matching module*), yaitu modul untuk menentukan tingkat kesamaan/ ketidaksamaan antara ciri biometrika yang diuji dengan ciri biometrika acuan pada basisdata.

4) Modul keputusan (*decision module*), yaitu modul untuk memutuskan apakah pengguna yang diuji diterima atau ditolak berdasarkan hasil pencocokan. Sah atau tidak sahnya pengguna diputuskan berdasarkan suatu nilai ambang (*threshold*).

2.1.2 Citra Sidik Jari

![Gambar 2.2 Ridge dan Valley dalam Sidik Jari](image-url)
Karakteristik sidik jari merupakan gabungan dari pola bukit (ridge) dan lembah (valley). Bentuk dari bukit dan lembah merupakan kombinasi dari faktor genetik dan faktor lingkungan. DNA memberikan arah dalam pembentukan kulit ke janin, namun pembentukan sidik jari pada kulit itu sendiri merupakan suatu kejadian acak (random). Inilah yang menjadi suatu alasan mengapa setiap jari seseorang memiliki sidik jari yang berbeda-beda dengan orang lain, bahkan pada kembar identik.

Sifat-sifat yang dimiliki oleh sidik jari antara lain:

1) *Parenrial nature*, yaitu guratan-guratan pada sidik jari yang melekat pada kulit manusia seumur hidup.

2) *Immutability*, yaitu sidik jari seseorang tidak pernah berubah, kecuali mendapatkan kecelakaan yang serius.

3) *Individuality*, yaitu pola sidik jari adalah unik dan berbeda-beda untuk setiap orang.

Adapun klasifikasi sidik jari antara lain:

1) *Arch* adalah bentuk pokok sidik jari dimana garis-garis datang dari sisi lukisan yang satu mengalir ke arah sisi yang lain, dengan sedikit bergelombang naik ditengah, pola arch seperti pada gambar 2.3 (a).

2) *Loop* adalah garisnya memasuki pokok lukisan dari sisi yang searah dengan keliling, melengkung ditengah pokok lukisan dan kembali atau cenderung kembali ke arah sisi semula pola loop seperti pada gambar 2.3 (b).

3) *Whorl* (lingkaran) adalah bentuk pokok sidik jari, mempunyai dua delta dan sedikitnya satu garis melingkar di dalam pola area, berjalan di depan kedua delta pola whorl seperti pada gambar 2.3 (c).

![Gambar 2.3 Sidik Jari (a) Arch, (b) Loop, (c) Whorl]

Universitas Sumatera Utara
Sidik jari dapat dibagi dalam 3 tipe sebagai pola utama, yaitu *arch, loop, whorl*, seperti yang telah dijelaskan di atas. Tipe *loop* merupakan pola yang paling banyak ditemukan. Menurut Galton, sekitar 60% sidik jari bertipe *loop*, 30% bertipe *whorl* dan 10% bertipe *arch*.

Titik minus merupakan titik-titik informasi yang dapat mencirikan suatu sidik jari. Beberapa bagian dari sidik jari yang dapat dijadikan sebagai titik minus antara lain dijelaskan pada tabel berikut:

Tabel 2.1 Pola Minusi Sidik Jari

<table>
<thead>
<tr>
<th>Pola</th>
<th>Nama</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ridge</td>
<td>Mempunyai ketegasan jarak ganda dari permulaan menuju akhir, sebagai lebar ridge satu dengan lainya.</td>
<td></td>
</tr>
<tr>
<td>Evading Ends</td>
<td>Dua ridge dengan arah berbeda berjalan sejajar satu sama lain kurang dari 3mm.</td>
<td></td>
</tr>
<tr>
<td>Bifurcation</td>
<td>Dua ridge dengan arah yang sama berjalan sejajar satu sama lain kurang dari 3mm.</td>
<td></td>
</tr>
<tr>
<td>Hook</td>
<td>Arah ridge membelah, salah satu ridge tidak lebih panjang dari 3mm.</td>
<td></td>
</tr>
<tr>
<td>Fork</td>
<td>Dua ridge dihubungkan oleh sepertiga ridge yang tidak lebih panjang dibanding 3mm.</td>
<td></td>
</tr>
<tr>
<td>Dot</td>
<td>Bagian ridge berbentuk lingkaran.</td>
<td></td>
</tr>
<tr>
<td>Eye/Island</td>
<td>Ridge membelah dan menggabungkan lagi di dalam 3mm.</td>
<td></td>
</tr>
<tr>
<td>Enclosed Ridge</td>
<td>Ridge tidak lebih panjang dari 6mm antara dua ridge.</td>
<td></td>
</tr>
<tr>
<td>Enclosed Loop</td>
<td>Membentuk pola pengulangan antara dua atau lebih ridge yang saling paralel.</td>
<td></td>
</tr>
<tr>
<td>Specialties</td>
<td>Ridge membentuk seperti tanda tanya dan sangkutan pemotong.</td>
<td></td>
</tr>
</tbody>
</table>

Berdasarkan beberapa titik minus pada tabel 2.1 di atas, titik percabangan dan titik akhir bukit merupakan titik yang paling banyak digunakan dalam proses pengenalan sidik jari.
2.2 Microsoft Office Access

Database dapat diartikan sebagai kumpulan data yang terdiri atas satu atau lebih tabel yang terintegrasi satu sama lain, dimana setiap pemakai (user) diberi wewenang (otorisasi) untuk dapat mengakses, mengubah, menghapus, menganalisis, menambah, memperbaiki data dalam tabel-tabel tersebut. *Database relationship* adalah relasi atau hubungan antara beberapa tabel dalam *database*. Relasi antar tabel dihubungkan oleh *primary key* dan *foreign key*. Untuk membuat *relationship* maka masing-masing tabel harus memiliki *primary key* dan *foreign key* untuk dapat menghubungkan antara tabel induk dengan tabel anak.

Microsoft Access merupakan sebuah program aplikasi basis data komputer relasional yang ditujukan untuk kalangan rumahan dan perusahaan kecil hingga menengah. Aplikasi ini merupakan anggota dari beberapa aplikasi Microsoft Office, seperti Microsoft Word, Microsoft Excel, dan Microsoft PowerPoint. Aplikasi ini menggunakan mesin basis data Microsoft Jet Database Engine, dan juga menggunakan tampilan grafis yang intuitif sehingga memudahkan pengguna. Para pengguna/programmer yang mahir dapat menggunakankannya untuk mengembangkan perangkat lunak aplikasi yang kompleks, sementara para programmer yang kurang mahir dapat menggunakankannya untuk mengembangkan perangkat lunak aplikasi yang sederhana. Tampilan Microsoft Access seperti pada gambar 2.4 berikut:
2.3 Visual Basic 2010

Ada banyak perubahan dalam Visual Basic 2010 jika dibandingkan Visual Basic 6.0, antara lain:
1) Bahasa pemprograman berbasis objek (Object Oriented Programming), sedangkan Visual Basic 6.0 bukan berbasis objek.

3) Semua aplikasi yang dibuat beroperasi dalam manajemen Common Language Runtime (CLR).

Tampilan Visual Basic 2010 seperti pada gambar 2.5 berikut ini:

Gambar 2.5 Visual Basic 2010

2.4 Flowchart (Diagram Alir)

Flowchart adalah penggambaran secara grafik dari langkah-langkah dan urutan prosedur dari suatu program. Flowchart sangat membantu proses analis dan programmer untuk memecahkan masalah kedalam segmen-segmen yang lebih kecil dan mempermudah dalam menganalisis alternatif-alternatif lain dalam pengoperasian. Berikut ini simbol-simbol flowchart yang dijelaskan pada tabel 2.2 berikut ini:
<table>
<thead>
<tr>
<th>No.</th>
<th>Nama</th>
<th>Simbol</th>
<th>Keterangan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dokumen</td>
<td></td>
<td>Sebuah dokumen atau laporan.</td>
</tr>
<tr>
<td>2</td>
<td>Pemrosesan Komputer</td>
<td></td>
<td>Sebuah fungsi pemrosesan yang dilaksanakan oleh komputer, biasanya menghasilkan data atau informasi.</td>
</tr>
<tr>
<td>3</td>
<td>Keying (typing verifying)</td>
<td></td>
<td>Menunjukan pemasukan data kedalam komputer melalui online terminal atau perangkat terminal input/output.</td>
</tr>
<tr>
<td>4</td>
<td>Arsip</td>
<td></td>
<td>Arsip dokumen disimpan dan diambil secara manual. Huruf didalamnya menunjukan cara pengurutan arsip.</td>
</tr>
<tr>
<td>5</td>
<td>Arus Dokumen/ Pemrosesan</td>
<td></td>
<td>Arah arus dokumen atau pemrosesan.</td>
</tr>
<tr>
<td>6</td>
<td>Penghubung Dalam Sebuah Halaman</td>
<td></td>
<td>Menghubungkan bagian alir pada halaman yang sama. Simbol ini digunakan untuk menghindari terlalu banyak anak panah yang saling melintang.</td>
</tr>
<tr>
<td>7</td>
<td>Penghubung Pada Halaman Berbeda</td>
<td></td>
<td>Menghubungkan bagian alir pada halaman yang berbeda. Simbol ini menunjukkan penghubung ke halaman yang baru.</td>
</tr>
<tr>
<td>8</td>
<td>Terminal</td>
<td></td>
<td>Digunakan untuk memulai, mengakhiri dalam sebuah proses atau program.</td>
</tr>
<tr>
<td>9</td>
<td>Keputusan</td>
<td></td>
<td>Sebuah tahap pembuatan keputusan; atau menyatakan perbandingan pernyataan, penyelesaian data yang memberikan pilihan untuk langkah selanjutnya.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>Anotasi</td>
<td>Tambahan penjelasan deskriptif atau keterangan, atau catatan sebagai klasifikasi.</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>Catatan</td>
<td>Digunakan pada proses input/output data, parameter informasi.</td>
<td></td>
</tr>
</tbody>
</table>

2.5 Pengolahan Citra

2.5.1 Definisi Pengolahan Citra Digital

Citra digital adalah citra yang dapat diolah dengan komputer. Pengolahan citra digital merupakan sebuah disiplin ilmu yang mempelajari hal-hal yang berkaitan dengan perbaikan kualitas gambar seperti peningkatan kontras, transformasi warna,
restorasi citra dan transformasi gambar seperti rotasi, translasi, skala, transformasi geometri. Sebuah citra digital dapat mewakili oleh sebuah matriks yang terdiri dari \(M \) kolom \(N \) baris, dimana perpotongan antara kolom dan baris disebut piksel (piksel = picture element), yaitu elemen terkecil dari sebuah citra. Piksel mempunyai dua parameter, yaitu koordinat dan intensitas atau warna. Nilai yang terdapat pada koordinat \((x,y)\) adalah \(f(x,y)\), yaitu besar intensitas atau warna dari piksel di titik itu. Oleh sebab itu, sebuah citra digital dapat ditulis dalam bentuk matriks berikut:

\[
f(x,y) = \begin{bmatrix}
f(0,0) & f(0,1) & \cdots & f(0,M-1) \\
 f(1,0) & \cdots & \cdots & f(1,M-1) \\
 \vdots & \vdots & \ddots & \vdots \\
 f(N-1,0) & f(N-1,1) & \cdots & f(N-1,M-1)
\end{bmatrix}
\]

Berdasarkan gambaran tersebut, secara matematis citra digital dapat dituliskan sebagai fungsi \(f(x,y)\), dimana harga \(x \) (baris) dan \(y \) (kolom) merupakan koordinat posisi dan \(f(x,y)\) adalah nilai fungsi pada setiap titik \((x,y)\) yang menyatakan besar intensitas citra atau tingkat keabuan atau warna dari piksel di titik tersebut (Sutoyo, et al. 2009). Berikut ini pada gambar 2.6 nilai piksel dari citra sidik jari.

<table>
<thead>
<tr>
<th></th>
<th>106</th>
<th>76</th>
<th>72</th>
<th>70</th>
<th>74</th>
<th>75</th>
<th>72</th>
<th>151</th>
<th>166</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>76</td>
<td>71</td>
<td>71</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>79</td>
<td>151</td>
</tr>
<tr>
<td>69</td>
<td>71</td>
<td>70</td>
<td>74</td>
<td>69</td>
<td>65</td>
<td>106</td>
<td>156</td>
<td>163</td>
<td>163</td>
</tr>
<tr>
<td>68</td>
<td>68</td>
<td>77</td>
<td>88</td>
<td>70</td>
<td>84</td>
<td>133</td>
<td>160</td>
<td>115</td>
<td>115</td>
</tr>
<tr>
<td>75</td>
<td>70</td>
<td>80</td>
<td>83</td>
<td>69</td>
<td>113</td>
<td>154</td>
<td>133</td>
<td>88</td>
<td>88</td>
</tr>
<tr>
<td>79</td>
<td>75</td>
<td>93</td>
<td>77</td>
<td>73</td>
<td>139</td>
<td>165</td>
<td>98</td>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td>71</td>
<td>78</td>
<td>129</td>
<td>92</td>
<td>92</td>
<td>150</td>
<td>165</td>
<td>80</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td>80</td>
<td>119</td>
<td>150</td>
<td>134</td>
<td>135</td>
<td>166</td>
<td>166</td>
<td>123</td>
<td>87</td>
<td>87</td>
</tr>
<tr>
<td>84</td>
<td>115</td>
<td>131</td>
<td>149</td>
<td>158</td>
<td>163</td>
<td>158</td>
<td>131</td>
<td>91</td>
<td>91</td>
</tr>
</tbody>
</table>

Nilai Intesitas Piksel

Gambar 2.6 Nilai Piksel dari Citra Sidik Jari
2.5.2 Jenis- Jenis Citra Digital

Berikut jenis-jenis citra digital antara lain :

a) Citra Biner

Citra biner diperoleh melalui proses pemisahan piksel-piksel berdasarkan derajat keabuan yang dimilikinya. Piksel yang memiliki derajat keabuan lebih kecil dari nilai batas yang ditentukan akan diberikan nilai 0, sementara piksel yang memiliki derajat keabuan yang lebih besar dari batas akan diubah menjadi bernilai 1. Berikut pada gambar 2.7 contoh citra Lenna dalam bentuk biner :

![Gambar 2.7 Citra Biner](http://www.cs.cmu.edu/~chuck/lennapg/)

b) Citra Keabuan (Grayscale)

Citra grayscale adalah citra digital yang setiap pikselya merupakan sampel tunggal, yaitu informasi intensitas. Citra jenis ini terbentuk hanya dari warna abu-abu pada tingkatan yang berbeda-beda, mulai dari warna hitam pada tingkat intensitas terendah hingga warna putih pada tingkat intensitas tertinggi. Citra ini disebut juga citra hitam putih atau citra monokromatik. Berikut pada gambar 2.8 contoh citra Lenna dalam bentuk Grayscale :

![Gambar 2.8 Citra Keabuan (Grayscale)](http://www.cs.cmu.edu/~chuck/lennapg/)
c) Citra Warna (*True Color*)

Setiap piksel pada citra warna mewakili warna yang merupakan kombinasi dari tiga warna (RGB= *Read Green Blue*). Piksel (*picture element*) digunakan untuk mengekspresikan resolusi layer digital, 1 piksel adalah unit terkecil dari sebuah gambar. Berikut pada gambar 2.9 contoh citra Lenna dalam bentuk RGB:

![Citra Warna (True Color)](http://www.cs.cmu.edu/~chuck/lennapg/)

Gambar 2.9 Citra Warna (*True Color*)

(Sumber : http://www.cs.cmu.edu/~chuck/lennapg/)

2.5.3 Elemen-Elemen Citra Digital

Berikut ini adalah elemen-elemen yang terdapat pada citra digital antara lain:

1. Kecerahan (*brightness*)

Kecerahan (*brightness*) merupakan intensitas cahaya yang dipancarkan piksel dari citra yang dapat ditangkap oleh sistem pengelihatan. Kecerahan pada
sebuah titik (piksel) di dalam citra merupakan intensitas rata-rata dari suatu area yang melingkupinya.

2. Kontras (contrast)
Kontras (contrast) menyatakan sebaran terang dan gelap dalam sebuah citra. Pada citra yang baik, komposisi gelap dan terang tersebar secara merata.

3. Kontur (contour)
Kontur (contour) adalah keadaan yang ditimbulkan oleh perubahan pada intensitas pada piksel-piksel yang bertetangga. Karena adanya perubahan intensitas inilah mata mampu mendeteksi tepi-tepi objek di dalam citra.

4. Warna
Warna sebagai persepsi yang ditangkap sistem visual terhadap panjang gelombang cahaya yang dipantulkan oleh objek.

5. Bentuk (shape)
Bentuk (shape) adalah properti intrinsik dari objek 3 dimensi, dengan pengertian bahwa bentuk merupakan properti intrinsik utama untuk sistem visual manusia.

6. Tekstur (texture)
Tekstur (texture) dicirikan sebagai distribusi spasial dari derajat keabuan di dalam sekuupan piksel-piksel yang bertetangga. Tekstur adalah sifat-sifat atau karakteristik yang dimiliki oleh suatu daerah yang cukup besar sehingga secara alami sifat-sifat tersebut dapat berulang. Tekstur adalah keteraturan pola-pola tertentu yang terbentuk dari susunan piksel-piksel dalam citra digital.
2.5.4 Langkah-Langkah Pengolahan Citra Digital

Gambar 2.10 Langkah-langkah pengolahan citra digital
(Sumber : Sutoyo, et al. 2010)

Secara umum, langkah-langkah pengolahan citra digital sebagai berikut:

1) Akuisi citra

Akuisi citra adalah tahap awal untuk mendapatkan citra digital. Tujuan akuisi citra adalah untuk menentukan data yang diperlukan dan memilih metode perekaman citra digital. Tahap ini dimulai dari objek yang akan diambil gambarnya, persiapan alat-alat sampai pada pencitraan. Pencitraan adalah kegiatan transformasi dari citra tampak (foto, gambar, lukisan, patung, pemandangan, dan lain-lain) menjadi citra digital. Beberapa alat yang dapat digunakan untuk pencitraan adalah:

a) Video kamera
b) Kamera digital
c) Kamera konvensional dan konverter analog menuju digital
d) Scanner
e) Foto sinar-x/ sinar infra merah

Hasil dari akuisi citra ini ditentukan oleh kemampuan sensor untuk mendigitalisasi sinyal yang terkumpul pada sensor tersebut. Kemampuan digitalisasi alat ditentukan oleh resolusi alat tersebut.
2) Pre-processing
Tahap ini digunakan untuk menjamin kelancaran pada proses berikutnya. Hal-hal penting yang dilakukan pada tingkatan ini diantaranya adalah sebagai berikut:

a) Peningkatan kualitas citra (kontras, brightness, dan lain-lain)
b) Menghilangkan noise
c) Perbaikan citra (image restoration)
d) Transformasi (image transformation)
e) Menentukan bagian citra yang akan diobeservasi

3) Segmentasi
Tahapan ini digunakan untuk mempartisi citra menjadi bagian-bagian pokok yang mengandung informasi penting. Misalnya memisahkan antara objek dengan latar belakang.

4) Representasi dan deskripsi
Dalam hal ini representasi merupakan suatu proses untuk merepresentasikan suatu wilayah sebagai suatu daftar titik-titik koordinat dalam kurva tertutup, dengan deskripsi luasan atau perimetrernya. Setelah suatu wilayah dapat direpresentasi, proses selanjutnya adalah melakukan deskripsi citra dengan cara seleksi ciri (feature extraction and selection). Seleksi ciri bertujuan untuk memilih informasi kuantitatif dari ciri yang ada, yang dapat membedakan kelas-kelas objek dengan baik, sedangkan ekstraksi ciri bertujuan untuk mengukur besaran kuantitatif ciri setiap piksel, misalnya rata-rata, standar deviasi, koefisien variasi, dan lain-lain.

5) Pengenalan dan interpretasi
Tahap pengenalan bertujuan untuk memberi label pada sebuah objek yang informasinya disediakan oleh descriptor, sedangkan tahap interpretasi bertujuan untuk memberi arti atau makna kepada kelompok objek-objek yang dikenali.
6) Basis pengetahuan

Basis pengetahuan sebagai basis data pengetahuan berguna untuk memandu operasi dari masing-masing modul proses dan mengkontrol interaksi antara modul-modul tersebut. Selain itu, basis pengetahuan juga digunakan sebagai referensi pada proses template matching atau pada pengenalan pola.

2.6 Akuisisi Citra

Proses akuisisi data (data acquisition) diawali dengan pegambilan sampel sidik jari dengan menggunakan sensor fingerprint Biofinger FR-099 yang akan digunakan langsung secara realtime. Sampel citra sidik jari tersebut langsung digunakan pada proses pendaftaran citra sidik jari dan verifikasi absensi. Citra sidik jari yang diambil yaitu citra sidik jari dari jari tangan kiri dengan ukuran 265x304 piksel.

Pengambilan sidik jari tangan kiri didasarkan atas asumsi bahwa sebagian besar pengguna lebih sering menggunakan tangan kanan untuk melakukan aktivitas sehingga jari tangan kiri bentuknya lebih invarian dibanding dengan jari tangan kanan.

2.6.1 Sensor Fingerprint Biofinger FR-099

Mesin pembaca sidik jari atau fingerprint reader yang digunakan oleh penulis yaitu Biofinger FR-099 yang bekerja dengan perangkat komputer, secara online dan realtime. Tampilan fingerprint tipe Biofinger FR-099 seperti pada gambar 2.11 berikut:
2.6.2 Sistem Pencitraan

2.7 Pra-pemrosesan (Pre-processing)

Pra-pemrosesan adalah transformasi input data mentah untuk membantu kemampuan komputasional dan pencari ciri serta untuk mengurangi kesalahan. Pada penelitian ini tahap pra-pemrosesan, meliputi citra yang ditangkap oleh sensor kemudian akan diubah menjadi citra grayscale (citra yang beraras keabuan). Selanjutnya citra sidik jari disegmentasi yaitu proses pemisahan antara objek citra sidik jari dengan latar belakang, sehingga objek citra sidik jari diubah menjadi citra biner.

Berikut ini merupakan tahap-tahap pra-pemrosesan antara lain:
1. Mengubah citra RGB (Red Green Blue) menjadi beraras keabuan (Grayscale).
2. Segmentasi yaitu proses memisahkan antara wilayah latar belakang dengan wilayah latar depan.

2.7.1 Konversi Citra RGB Menjadi Citra Grayscale

Citra RGB (Red Green Blue) / warna dapat diubah menjadi citra grayscale dengan menghitung rata-rata elemen warna Red (Merah), Green (Hijau) dan Blue (Biru). Secara matematis perhitungan sebagai berikut:
\[f_o(x, y) = \frac{f_i^R(x, y) + f_i^G(x, y) + f_i^B(x, y)}{3} \] \hspace{1cm} \text{.......................... (2.2)}

Berikut gambar 2.13 contoh proses perhitungan konversi citra RGB menjadi grayscale sebagai berikut:

\[
f_o = \frac{(50+65+50)}{3}
\]

<table>
<thead>
<tr>
<th>R=50</th>
<th>R=40</th>
<th>R=90</th>
<th>R=80</th>
<th>R=50</th>
</tr>
</thead>
<tbody>
<tr>
<td>G=65</td>
<td>G=40</td>
<td>G=90</td>
<td>G=50</td>
<td>G=30</td>
</tr>
<tr>
<td>B=50</td>
<td>B=55</td>
<td>B=90</td>
<td>B=50</td>
<td>B=40</td>
</tr>
<tr>
<td>R=40</td>
<td>R=50</td>
<td>R=40</td>
<td>R=20</td>
<td>R=50</td>
</tr>
<tr>
<td>G=80</td>
<td>G=80</td>
<td>G=90</td>
<td>G=20</td>
<td>G=60</td>
</tr>
<tr>
<td>B=30</td>
<td>B=50</td>
<td>B=80</td>
<td>B=50</td>
<td>B=70</td>
</tr>
<tr>
<td>R=80</td>
<td>R=70</td>
<td>R=80</td>
<td>R=10</td>
<td>R=80</td>
</tr>
<tr>
<td>G=60</td>
<td>G=70</td>
<td>G=90</td>
<td>G=70</td>
<td>G=50</td>
</tr>
<tr>
<td>B=40</td>
<td>B=70</td>
<td>B=70</td>
<td>B=10</td>
<td>B=80</td>
</tr>
<tr>
<td>R=50</td>
<td>R=40</td>
<td>R=70</td>
<td>R=60</td>
<td>R=50</td>
</tr>
<tr>
<td>G=90</td>
<td>G=60</td>
<td>G=70</td>
<td>G=20</td>
<td>G=80</td>
</tr>
<tr>
<td>B=70</td>
<td>B=50</td>
<td>B=70</td>
<td>B=40</td>
<td>B=50</td>
</tr>
<tr>
<td>R=50</td>
<td>R=40</td>
<td>R=80</td>
<td>R=70</td>
<td>R=90</td>
</tr>
<tr>
<td>G=65</td>
<td>G=60</td>
<td>G=80</td>
<td>G=60</td>
<td>G=85</td>
</tr>
<tr>
<td>B=50</td>
<td>B=80</td>
<td>B=80</td>
<td>B=50</td>
<td>B=70</td>
</tr>
</tbody>
</table>

\[
\begin{array}{cccccc}
55 & 45 & 90 & 60 & 40 \\
50 & 60 & 70 & 30 & 60 \\
60 & 70 & 80 & 30 & 70 \\
70 & 50 & 70 & 40 & 60 \\
60 & 60 & 80 & 60 & 80
\end{array}
\]

Gambar 2.13 Proses Konversi Citra RGB Menjadi Grayscale

2.7.2 Segmentasi

Segmentasi citra bertujuan untuk membagi wilayah-wilayah yang homogen. Segmentasi merupakan suatu metode yang digunakan untuk mengubah citra input ke dalam citra output berdasarkan atribut yang diambil dari citra tersebut. Segmentasi membagi citra ke dalam daerah intensitasnya masing-masing sehingga dapat membedakan antara objek dengan background-nya. Pembagian ini tergantung terhadap masalah yang akan diselesaikan. Segmentasi harus dihentikan apabila masing-masing objek telah terisolasi atau terlihat dengan jelas. Tingkat keakurasi segmentasi tergantung pada tingkat keberhasilan prosedur analisis yang dilakukan.
Algoritma pada segmentasi citra terbagi atas dua macam, yaitu:

1. Diskontinuitas
 Diskontinuitas merupakan pembagian citra berdasarkan perbedaan dalam intensitasnya, contohnya titik, garis, dan edge (tepi).

2. Similaritas
 Similaritas merupakan pembagian citra berdasarkan kesamaan-kesamaan kriteria yang dimilikinya, contohnya thresholding, region growing, region splitting, dan region merging.

![Gambar 2.14 Proses Pemisahan, (a) Gambar Asli, (b) Hasil Segmentasi](attachment:image)

Pada gambar 2.14 merupakan tahap segmentasi, dimana dalam proses ini adalah proses pemisahan antara objek (citra sidik jari) dengan background-nya.

Proses segmentasi dilakukan dengan Thresholding (pengambangan) yang akan menghasilkan citra biner yaitu citra yang memiliki dua nilai tingkat keabuan yaitu hitam dan putih. Secara umum proses pengambangan citra grayscale untuk menghasilkan citra biner adalah sebagai berikut:

\[g(x,y) = \begin{cases} 1 & \text{jika } f(x,y) \geq T \\ 0 & \text{jika } f(x,y) < T \end{cases} \]

(2.3)

Dengan \(g(x,y) \) adalah citra biner dari citra grayscale \(f(x,y) \) dan \(T \) menyatakan nilai ambang. Nilai \(T \) memegang peranan yang sangat penting dalam proses pengambangan. Kualitas citra biner sangat tergantung terhadap nilai \(T \) yang digunakan.
Terdapat dua jenis pengambangan antara lain pengambangan global (global thresholding) dan pengambangan secara lokal adaptif (locally adaptive thresholding). Pada penelitian ini digunakan pengambangan global, dimana seluruh piksel pada citra dikonversikan menjadi hitam atau putih dengan suatu nilai ambang T yaitu dengan nilai 128.

2.8 Ekstraksi Fitur

Ekstraksi fitur (feature extraction) merupakan bagian fundamental dari analisis citra. Fitur adalah karakteristik yang unik dari suatu objek. Karakteristik dari fitur antara lain:

1. Dapat membadaakan suatu objek dengan yang lainya (discrimination).
3. Tidak terikat (independence) dalam arti bersifat invarian terhadap berbagai transformasi (rotasi, penskalaan, pergeseiran dan sebagainya).
4. Jumlahnya sedikit, karena fitur yang jumlahnya sedikit akan dapat menghemat waktu komputasi dan ruangan penyimpanan untuk proses selanjutnya (proses pemanfaatan fitur).

2.8.1 Reference Point / Core Point

Gambar 2.15 Penentuan Reference Point
(Sumber : Jain, et al. 2006)

Pada penelitian ini, untuk menentukan reference point dilakukan dengan membagi dua sisi panjang dan sisi lebar dari citra sidik jari, sehingga titik perpotongan antara kedua sisi ditemukan. Titik perpotongan inilah yang disebut sebagai reference point/core point. Hal ini dikarenakan penulis menggunakan alat fingerprint secara online dalam membangun aplikasi ini. Berikut ini gambar 2.16 reference point pada citra sidik jari sebagai berikut:

Gambar 2.16 Reference Point Citra Sidik Jari

2.8.2 Tessellation ROI (Region of Interest)

Tessellation adalah pola bentuk identik yang harus disesuaikan tanpa celah, dan tidak tumpang tindih (nonoverlapping) pada citra sidik jari. Dalam metode ini, lingkaran didefinisikan sekitar reference point dan dibagi dalam 16 band (pita) dan masing-masing band dibagi lagi menjadi 4 sektor nonoverlapping. Oleh karena itu, jumlah total 64 sektor diciptakan. Region of Interest adalah kumpulan dari semua sektor.
Sebuah *tessellation* melingkar dipilih, karena rotasi sidik jari sesuai dengan rotasi *tessellation* (Baig, et al. 2013). Berikut ini gambar 2.17 citra sidik jari yang telah diterapkan *Tesselation Region of Interest*, sebagai berikut:

![Citra Sidik Jari](image)

Gambar 2.17 ROI Citra Sidik Jari

(Sumber : Jain, et al. 2006)

2.8.3 Metode Gabor Filter

Gambar 2.18 Diagram Proses Gabor Filter

(Sumber: Jain, et al. 2006)

Fungsi Gabor Filter dari masing-masing orientasi dirumuskan sebagai berikut:

\[
G(x, y, \theta, f) = \exp \left\{ -\frac{1}{2} \left[\frac{x^2}{\sigma_x^2} + \frac{y^2}{\sigma_y^2} \right] \right\} \cos(2\pi f x \theta) \tag{2.4}
\]

\[
x_\theta = x \cos \theta + y \sin \theta \tag{2.5}
\]

\[
y_\theta = -x \sin \theta + y \cos \theta \tag{2.6}
\]

dimana \(\theta \) adalah arah orientasi yaitu \((0^\circ, 22.5^\circ, 45^\circ, 67.5^\circ, 90^\circ, 112.5^\circ, 135^\circ, 157.5^\circ) \). \(f \) adalah frekuensi gelombang sinusoidal sepanjang arah \(\theta \) dari koordinat \(x \), \(\sigma_x \) dan \(\sigma_y \) adalah konstanta standar deviasi Gaussian sepanjang sumbu \(x \) dan \(y \). Frekuensi \(f \) dari Gabor Filter menjadi rata-rata frekuensi galur \((1/K) \), dengan \(K \) adalah rata-rata jarak antara galur. Rata-rata jarak antara galur kira-kira 10 piksel pada sebuah citra sidik jari adalah 500dpi. Pada penelitian ini konstanta frekuensi gelombang sinusoidal \((f) \) yaitu 0.1, \(\sigma_x \) dan \(\sigma_y \) untuk masing-masing Gabor Filter menggunakan 4.0 (Win, et al. 2012).
2.9 Proses Pencocokan dengan Jarak Euclidean

Banyak cara yang dapat digunakan untuk mencocokkan citra dalam bentuk vektor. Dengan kata lain menentukan tingkat kesamaan maupun ketidaksamaan dua vektor diantaranya Euclidean Distance (Jarak Euclidean), City Block, Hamming Distance, Angular Separation dan sebagainya. Dalam penelitian ini, penulis menggunakan Jarak Euclidean. Jarak Euclidean adalah tahap yang sering digunakan untuk menghitung / menentukan perbedaan antara 2 vektor pada proses pencocokan sidik jari. Berikut merupakan rumus menghitung Jarak Euclidean ternormalisasi antara lain sebagai berikut:

\[\tilde{d}(u, v) = \left(\sum (\tilde{u}_i - \tilde{v}_i)^2 \right)^{1/2} \] (2.7)

dengan :

\[\tilde{u}_i = \frac{u_i}{||u||} \quad \text{dan} \quad \tilde{v}_i = \frac{v_i}{||v||} \] (2.8)

||v|| disebut norm dari v dan untuk Jarak Euclidean yaitu :

\[||v|| = \left(\sum v_i^2 \right)^{1/2} \] (2.9)

dimana :

\[\tilde{v}_i = \text{vektor } v \text{ ke } i \]
\[\tilde{u}_i = \text{vektor } u \text{ ke } i \]

Sifat dari normalisasi Jarak Euclidean adalah hasilnya berada pada rentang \(0 \leq \tilde{d}(u, v) \leq 2 \). Agar rentang skor berada antara 0 sampai 1 didapat dengan rumus : skor = \(1 - \tilde{d}(u, v) / 2 \). Semakin tinggi skor yang diperoleh maka dapat diasumsikan bahwa pengguna tersebut adalah sah (cocok).

2.10 Parameter Rasio Kesalahan

Suatu citra yang diuji, akan dilakukan pencocokkan dengan citra dalam database. Pengukuran keberhasilan pencocokan dari sistem biometrika adalah dengan menguji
seberapa besar respon sistem dalam menerima atau menolak. Tingkat kesalahan dalam sistem biometrika dihitung berdasarkan kesalahan penerimaan dan kesalahan penolakan. Pada penelitian ini tipe penentuan kesalahan menggunakan 3 parameter antara lain sebagai berikut:

a) *False Acceptance Rate* (FAR) yaitu kesalahan dimana sistem menerima orang yang tidak sah, atau sering disebut sebagai rasio kesalahan penerimaan.

\[
FAR = \frac{\text{jumlah sidik jari pengguna palsu yang diterima sistem}}{\text{jumlah sidik jari pengguna}} \quad \text{(2.10)}
\]

b) *False Rejection Rate* (FRR) yaitu kesalahan dimana sistem menolak orang yang sah.

\[
FRR = \frac{\text{jumlah sidik jari pengguna asli yang ditolak sistem}}{\text{jumlah sidik jari pengguna}} \quad \text{(2.11)}
\]

c) *Genuine Acceptance Rate* (GAR) yaitu jumlah pengguna asli yang diterima oleh sistem.

\[
GAR = 1 - FRR \quad \text{..(2.12)}
\]

Apabila sistem menerima citra yang diuji, padahal kenyataannya citra tersebut tidak terdapat pada basisdata acuan maka, sistem telah melakukan kesalahan menerima, artinya akurasi sistem akan menjadi rendah apabila diterapkan dalam sistem keamanan. Begitu sebaliknya apabila sistem menolak citra yang diuji padahal kenyataannya citra tersebut terdapat pada basisdata acuan maka, sistem telah melakukan kesalahan menolak, artinya akurasi sistem akan menjadi tinggi apabila diterapkan dalam sistem keamanan.

Kinerja biometrika ditentukan berdasarkan kedua parameter utama yaitu FRR dan FAR. Jika tingkat kesaluhanannya tinggi, maka sistem biometrika harus ditinjau apakah memang ada kesalahan algoritma atau kesalahan pembacaan sensor atau memang tipe biometrika itu sendiri tidak bisa memenuhi kriteria khusus.