II. TINJAUAN PUSTAKA

1. Ubi Jalar dan Potensinya

Tanaman ubi jalar diduga berasal dari daerah tropis Amerika Tengah, tetapi ada yang mengatakan dari Polinesia. Penyebaran tanaman ini banyak dilakukan oleh bangsa Portugis dan Spanyol pada abad ke-16, antara lain ke Filipina, Indonesia, Jepang dan Malaysia. Sekarang tanaman tersebut tumbuh disekitar katulistiwa hingga 40° lintang utara dan 32° lintang selatan, dan tumbuh diketinggian 1 - 2200 m diatas permukaan laut (Edmond and Ammerman, 1971).

Sebagai keluarga kangkung-kangkungan (Convolvulaceae), ubi jalar memiliki cukup banyak kerabat dekat dengan kangkung, antara lain kangkung air (Ipomoea aquatica Forsk), kangkung darat (Ipomoea reptance L. Poir), kangkung pagar atau kangkung hutan (Ipomoea crassicaulis sin. I fistulosa Marf). Bibit ubi jalar yang berasal dari sambungan kangkung hutan dengan tanaman ubi jalar dapat menghasilkan produk yang tinggi dan ukuran umbinya besar-besar (Rukmana, 1997).

Ubi jalar sebagai salah satu komoditas pertanian penghasil karbohidrat sudah tidak disangsiakan lagi bagi masyarakat kita. Bahkan, ubi jalar memiliki peran yang penting sebagai cadangan pangan bila produksi padi dan jagung tidak
mencukupi lagi. Di daerah pedesaan yang sangat miskin ubi jalar dapat dijadikan bahan pangan alternatif untuk menggantikan beras dan jagung (Juanda dan Cahyono, 2004).

Bahkan di daerah tropik ubi jalar mulai dikembangkan dan dimanfaatkan sebagai alternatif produk olahan, karena memiliki keunggulan agronomik dan kualitas. Rasa ubi jalar yang tidak manis merupakan syarat kualitas ubi jalar untuk dapat dimanfaatkan sebagai bahan pokok atau produk olahan (Martin, 1987).

Ubi jalar tumbuh baik di daerah tropis, dimana umbi akarnya dapat dimakan dan merupakan sumber makanan penting dibanyak negara. Umbinya

Menurut Widodo (1995), di Jepang harga ubi jalar lebih tinggi dan dapat mencapai empat kali lipat dibanding padi, karena di Jepang ubi jalar digunakan untuk beraneka ragam industri dari pangan (mie, permen, roti, dan lain-lain), minuman (sake, gin, es krim) hingga kosmetik.

Kesukaan masyarakat terhadap ubi jalar yang rendah dapat ditingkatkan jika ubi jalar diolah menjadi produk yang lebih sempurna dan disukai oleh masyarakat. Demikian pula, harga ubi jalar yang rendah dapat ditingkatkan melalui peningkatan bentuk yang lebih sempurna. Pengolahan ubi jalar dengan meningkatkan keragaman produk pangan yang lebih sempurna dapat memberi nilai tambah dan mengangkat ubi jalar menjadi komoditas yang bernilai tinggi (Juanda dan Cahyono, 2004).

Ubi jalar yang paling baik untuk diolah menjadi tepung adalah ubi jalar yang ketika dipanen pada umur 5 – 6 bulan. Secara organoleptik tepung ubi jalar tahan disimpan selama 9 bulan tanpa perubahan warna, rasa dan tidak ditumbuh oleh jamur (Anonimus, 1998).
2. Varietas Ubi Jalar

Menurut Juanda dan Cahyono (2004), ubi jalar dibedakan menjadi beberapa golongan sebagai berikut:

1. Ubi jalar putih, yakni jenis ubi jalar yang memiliki daging umbi berwarna putih.

2. Ubi jalar kuning, yakni jenis ubi jalar yang memiliki daging umbi berwarna kuning, kuning muda, atau putih kekuning-kuningan.

3. Ubi jalar orange, yakni jenis ubi jalar yang memiliki daging umbi berwarna orange.

4. Ubi jalar jingga, yakni jenis ubi jalar yang memiliki daging umbi berwarna jingga hingga jingga muda.

5. Ubi jalar ungu, yakni jenis ubi jalar yang memiliki daging umbi berwarna ungu hingga ungu muda.

Ubi jalar dapat berwarna putih, kuning, orange sampai merah, bahkan ada yang berwarna kebiruan, violet atau berbintik – bintik biru. Ubi yang berwarna kuning, orange sampai merah banyak mengandung karotenoid yang merupakan prekusor bagi vitamin A (Sediaoetama, 1993).
Onwuene (1978) mengatakan bahwa varietas ubi jalar berbeda satu sama lain dalam hal warna (kulit dan daging umbi), bentuk umbi, bentuk daun, dan waktu panen. Bentuk umbi dapat dibedakan dalam dua golongan, yaitu bulat dan lonjong dengan permukaan rata dan tidak rata. Warna kulit umbi biasanya putih, coklat dan kuning atau kemerah-merahan, sedangkan daging umbi berwarna putih atau kuning jingga.

Warna daging umbi memiliki hubungan dengan kandungan gizi, terutama kandungan beta karoten. Umbi yang berwarna jingga atau orange mengandung beta karoten lebih tinggi daripada jenis ubi jalar lainnya. Demikian pula daging umbi yang berwarna orange memiliki rasa yang lebih manis daripada daging umbi yang berwarna lain (Juanda dan Cahyono, 2004).

Secara fisik kulit ubi jalar lebih tipis dibandingkan kulit ubi kayu dan merupakan umbi dari bagian tanaman. Warna kulit ubi jalar bervariasi dan tidak selalu sama dengan warna umbi. Warna daging umbinya bermacam-macam, dapat berwarna putih, kuning, jingga kemerahan atau keabuan. Demikian pula bentuk umbinya sering kali tidak seragam (Syarief dan Irawati, 1986).

2. Komposisi Kimia Ubi Jalar

Secara umum ubi jalar mengandung pati 8 – 29%, karbohidrat bukan pati 0,5 – 7.5%, gula reduksi 0,5 – 2,5%, ekstrak eter 1,8 – 6,4% serta karoten 1 – 12% dan bahan mineral lain sebanyak 0,9 – 1,4% dalam setiap 100 gram bahan segar (Onwuene, 1978)

Adapun komposisi kimia ubi jalar dibanding dengan ubi kayu dan beras giling dapat dilihat pada Tabel-1.

<table>
<thead>
<tr>
<th>Komponen</th>
<th>Ubi Jalar</th>
<th>Ubi Kayu</th>
<th>Beras Giling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Putih</td>
<td>Merah</td>
<td></td>
</tr>
<tr>
<td>Kalori (kal)</td>
<td>123</td>
<td>123</td>
<td>146</td>
</tr>
<tr>
<td>Protein (g)</td>
<td>1,8</td>
<td>1,8</td>
<td>1,2</td>
</tr>
<tr>
<td>Lemak (g)</td>
<td>0,7</td>
<td>0,7</td>
<td>0,3</td>
</tr>
<tr>
<td>Karbohidrat (g)</td>
<td>27,9</td>
<td>27,9</td>
<td>34,7</td>
</tr>
<tr>
<td>Kalsium (mg)</td>
<td>30</td>
<td>30</td>
<td>33</td>
</tr>
<tr>
<td>Phosfor (mg)</td>
<td>49</td>
<td>49</td>
<td>40</td>
</tr>
<tr>
<td>Besi (mg)</td>
<td>0,7</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>Vitamin A (SI)</td>
<td>60</td>
<td>7700</td>
<td>0</td>
</tr>
<tr>
<td>Vitamin B1 (mg)</td>
<td>0,09</td>
<td>0,09</td>
<td>0,06</td>
</tr>
<tr>
<td>Vitamin C (mg)</td>
<td>22</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>Air (g)</td>
<td>68,5</td>
<td>68,5</td>
<td>62,5</td>
</tr>
<tr>
<td>b.d.d (%)</td>
<td>86</td>
<td>86</td>
<td>75</td>
</tr>
</tbody>
</table>

4. Karbohidrat

Ubi jalar mengandung senyawa penyebab flatulensi. Flatulensi merupakan akibat dari sisa karbohidrat yang tidak tercerna secara sempurna yang difermentasi oleh bakteri tertentu dalam usus, sehingga dihasilkan gas H₂ dan CO₂ (penyebab kembung), dengan pemasakan sifat pembentukan gas tersebut dapat diturunkan. Diduga flatulensi disebabkan oleh senyawa karbohidrat jenis raffinosa, stakiosa dan verbaskosa (Palmer, 1982).

Ciri lain dari ubi jalar adalah kandungan gula cukup tinggi yang dapat memberikan rasa manis yang lebih tinggi dibandingkan dengan sumber karbohidrat yang lain. Komposisi kimia lain yang cukup berperan adalah amilosa. Kadar amilosa dalam ubi jalar bervariasi dari 17,5 sampai 20%. Kadar amilosa pada ubi jalar dapat memberikan rasa berpasir dan menyerap air lebih besar pada ubi. Makin tinggi kadar amilosa akan memberikan rasa berpasir yang makin besar pula. Ubi jalar berkadar amilosa rendah mempunyai rasa tidak berpasir, lebih kenyal dan kurang menyerap air (Bradbury and Holloway, 1988).

Pantastico (1986), menyatakan bahwa pada ubi jalar jenis basah dan berdaging lunak, kandungan patinya hanya sedikit yaitu sekitar 13 – 19%.
Sedangkan pada ubi jalar jenis kering dan dagingnya kompak mengandung pati relatif banyak yaitu sekitar 18 – 22% tidak berpasir, lebih kenyal dan kurang menyerap air.

Serat berbeda dengan zat gizi lain, tidak dapat dicerna dan tidak diserap di dalam usus kecil. Serat makanan pada umumnya terdiri atas selulosa, hemiselulosa, pektin, lignin, gumi dan musilase. Meskipun dulu tidak pernah dianggap zat gizi, kini serat makanan telah diakui di bidang gizi (Winarno, 1993).

Pada jaringan buah – buahan dan sayuran yang dikeringkan, kerusakan karbohidrat ialah yang terpenting. Pengeringan matahari yang lambat, tanpa
jaringan dilindungi dengan sulfit atau agensia lain yang cocok dapat menyebabkan kerusakan yang ekstensif (Desrosier, 1988).

5. Protein dan Lemak

Protein dapat mengalami kerusakan oleh pengaruh panas, reaksi kimia dengan asam atau basa, gencangan dan sebab-sebab lainnya. Proses denaturasi protein adalah suatu proses pemecahan protein, dimana dalam hal ini terjadi perubahan sifat-sifat kimia, maupun fisik dari protein sehingga dengan sendirinya dapat merubah sifat asalnya (Winarno dan Anshary, 1974).

Diantara berbagai cara pengolahan yang kini banyak digunakan baik di rumah tangga maupun di industri, pengaruh proses pemanasan terhadap protein dianggap yang terpenting. Bergantung pada suhu, waktu, kadar air, serta ada

Lipid merupakan penyebab utama terjadinya perubahan mutu bahan pangan. Perubahan mutu bahan pangan disebabkan oleh oksidasi lemak, yang pada tahap awal ditandai dengan flavour serta rasa dan bau yang tidak disukai dengan bau apek (fallowy). Jika ketengikan lemak telah mencapai tahap terakhir, maka lemak biasanya berbau tengik dan terasa getir (Eriksson, 1987).

Pengaruh oksidasi lipid adalah hilangnya asam lemak essensial, hilangnya vitamin-vitamin yang dapat larut dalam lemak dan menurunkan nilai gizi protein (Frankell, 1983).

Perubahan kimia dalam molekul lemak akibat pemanasan dipengaruhi oleh lamanya pemanasan, suhu, adanya akselerator misalnya oksigen atau hasil-hasil
proses oksidasi dan komposisi campuran asam lemak serta komposisi asam lemak yang terikat dalam molekul trigliserida (Ketaren, 1986).

6. Sulfitasi

Natrium metabisulfit merupakan bahan pengawet yang digolongkan ke dalam garam-garam sulfit dan merupakan bentuk anhidrida asam sulfit. Natrium metabisulfit biasa digunakan pada bahan pangan untuk mencegah pencoklatan enzimatis dan non-enzimatis, sebagai pemutih, anti oksidan dan penghambat pertumbuhan kapang dan khamir (Lindsay, 1985).

Sifat fisik natrium metabisulfit adalah berbentuk serbuk, berwarna putih, mudah larut dalam air, dan sedikit larut dalam alkohol, berbau khas seperti sulfur dioksida dan mempunyai rasa asam atau asin dan lebih stabil bila dibandingkan dengan natrium bisulfit. Natrium metabisulfit biasa digunakan dalam bahan pangan untuk mencegah reaksi pencoklatan baik enzimatis maupun non-enzimatis, sebagai pemutih dan anti oksidan (Furia, 1972).

Garam-garam sulfit dalam air akan membentuk asam sulfit, ion HSO$_3^-$ dan SO$_2$ yang masing-masing jumlahnya dipengaruhi oleh pH bahan. Reaksi
penguraian garam sulfit menjadi ion-ion sebagaimana tersebut diatas digambarkan oleh Frazier (1976) sebagai berikut:

\[
\begin{align*}
\text{Na}_2\text{S}_2\text{O}_3 & \quad + \quad \text{H}_2\text{O} \quad \longrightarrow \quad 2 \text{NaHSO}_3 \\
\text{NaHSO}_3 & \quad \longrightarrow \quad \text{Na}^+ \quad + \quad \text{HSO}_3^- \\
\text{HSO}_3^- & \quad + \quad \text{H}^+ \quad \longrightarrow \quad \text{H}_2\text{SO}_3 \quad \text{Atau} \\
\text{HSO}_3^- & \quad + \quad \text{H}^+ \quad \longrightarrow \quad \text{SO}_2 \quad + \quad \text{H}_2\text{O}
\end{align*}
\]

Gambar – 1. Reaksi Penguraian Natrium Metabisulfit dalam Air

Menurut Braverman (1968), mekanisme penghambatan reaksi browning non enzimatis oleh senyawa sulfit adalah reaksi antara bisulfit dengan gugus aldehid dari gula sehingga gugus aldehid tidak memiliki kesempatan untuk bereaksi dengan asam amino. Maka dengan demikian sulfit akan mencegah konversi D-Glukosa menjadi 5-hidroksi metil furfural atau HMF. Senyawa ini merupakan senyawa antara yang bereaksi dengan gugus amino dari protein atau asam amino dari protein atau asam amino membentuk pigmen melanoidin.

Gambar – 2. Penghambatan Reaksi Pencoklatan Enzimatis oleh Sulfit
Barnett (1985), menyatakan bahwa sulfur dioksida dapat digunakan untuk menghambat aktifitas fenolase, yaitu enzim yang mengkatalisasi reaksi pencoklatan enzimatis. Ion sulfit dapat mereduksi ikatan disulfida dari protein enzim sehingga dapat menghambat kerja enzim.

Menurut Haatela and Hannuksela (1990), agen sulfurisasi mencakup SO₂, sodium sulfit dan garam kalsium/natrium bisulfit dan metabisulfit. Na dan K bisulfit atau metabisulfit diubah menjadi asam sulfit dalam larutan dan SO₂ itu sendiri. Dibandingkan bentuk sulfit lainnya NaHSO₃ relatif lebih stabil daripada sulfit dan bisulfit selama penyimpanan.

Pada proses sulfitasi, selain gas SO₂ dan asam sulfit, bisa juga digunakan garam-garam sulfit, bisulfit atau metabisulfit. Tujuan proses sulfitasi adalah untuk membunuh mikrobia, mencegah browning, menonaktifkan enzim dan sebagai anti oksidan dan akan dapat mencegah oksidasi vitamin C, karotenoid dan senyawa senyawa lain yang bisa teroksidasi. Pengaruh SO₂ terhadap pertumbuhan mikrobia adalah karena terjadinya reaksi antara SO₂ dengan karbohidrat dari bahan yang dikerlingkan, sehingga tidak lagi digunakan sebagai sumber energi oleh mikrobia. SO₂ akan mendenaturasi sistem protein pada enzim sehingga mikroba tidak bisa melangsungkan kegiatan hidupnya. Ikatan disulfida (-S-S) pada protein enzim, dengan adanya SO₂ akan direduksi. Terjadinya reduksi pada ikatan disulfida ini, maka enzim tidak aktif lagi (Susanto dan Saneto, 1994).

7. Pengeritingan

Pengeritingan merupakan suatu metode untuk menghilangkan sebagian air dari suatu bahan dengan cara menguapkan air tersebut dengan bantuan energi matahari atau energi panas lainnya. Pengeritingan merupakan metode tertua untuk

Pengeringan dapat dilakukan dengan memakai suatu alat pengering (artificial drying) atau dengan penjemuran (sun drying) yang menggunakan sinar matahari. Pengeringan dengan menggunakan alat pengering mempunyai banyak keuntungan karena suhu dan aliran udara dapat diatur, sehingga waktu pengeringan dapat ditentukan dan kebersihan mudah diawasi (Winarno, 1993).

Pengering dengan tekanan vakum dipergunakan untuk mengeringkan bahan yang sensitif terhadap perubahan suhu tinggi, seperti sari buah serta larutan pekat lainnya. Pengeringan dengan mesin pengering jenis ini terjadi pada suhu rendah dan berlangsung dengan cepat. Peningkatan suhu terjadi dengan cara menginjeksikan udara panas ke dalam ruang pengering melalui lubang-lubang

Salah satu keuntungan menggunakan mikrowave dalam pengolahan bahan pangan adalah efisiensi waktu, dimana proses mikrowave membutuhkan waktu satu setengah jam dibanding dengan proses konvensional yang membutuhkan waktu delapan jam. Waktu yang singkat tersebut memungkinkan untuk menghasilkan produk lain, sehingga dapat meningkatkan jumlah produksi (Decareau, 1985).

Penjemuran mempunyai keuntungan karena energi panas yang digunakan murah dan bersifat murah serta melimpah, tetapi kerugiannya adalah jumlah panas sinar matahari yang tidak tetap sepanjang hari, dan kenaikan suhu tidak dapat diatur sehingga waktu penjemuran sukar untuk ditentukan dengan tepat. Selain daripada itu, karena penjemuran dilakukan ditempat terbuka yang langsung berhubungan dengan sinar matahari, maka kebersihannya sukar untuk diawasi (Winarno, 1993).
Menurut Moeljanto (1967), untuk mengatasi resiko kerugian pada cara penjemuran ditempuh dengan cara pengeringan buatan, sehingga pengeringan dapat dilakukan terus-menerus tanpa tergantung pada keadaan cuaca dan iklim, dapat menghemat tenaga dan waktu, dapat dihasilkan tingkat kekeringan yang seragam dan mutu yang lebih baik. Dalam proses pengeringan tingginya suhu harus diperhatikan dan suhu pengeringan yang terbaik tidak lebih dari 60 °C.

Pengeringan bahan – bahan gaplek dapat dilakukan dengan cara penjemuran pada teriknya matahari atau dengan menggunakan alat pengering mekanis (ruang pengering yang dapat diatur temperaturnya sekitar 60 – 65%). Pengeringan diakhiri setelah kadar air semula 70% turun menjadi sekitar 12% sampai 14% atau dilakukan pengontrolan lewat pematahan, apabila contoh mudah dipatalahkan itu tandanya gaplek telah kering (Kartasapoetra, 1994).

8. Tepung Ubi Jalar

Pembuatan tepung ubi jalar adalah sejenis pengolahan yang berguna untuk memperpanjang umur simpan ubi jalar. Selain itu tepung ubi jalar lebih luwes dipergunakan untuk pembuatan berbagai jenis makanan lain. Tepung ubi jalar diperoleh dari ubi jalar kering (gaplek ubi jalar) yang digiling kemudian diayak (Syarief dan Irawati, 1986).

Menurut Muchtadi dan Sugiyono (1992), pembuatan tepung ubi jalar dalam skala rumah tangga maupun industri kecil dapat dilakukan dengan dua cara yaitu cara kering dan cara basah. Pada cara kering cara kerjanya adalah sebagai berikut:

1. Pengeringan

Lakukan pengupasan dan pencucian terhadap umbi yang akan dikeringkan. Cuci sekali lagi setelah umbi dikupas. Iris atau rajang dengan ketebalan 2 – 5 mm. Rendam dalam larutan garam dapur 3 persen selama 5 menit. Jemur diatas rak penjemuran sampai kering.

2. Penepungan

Tumbuk umbi yang sudah kering menggunakan alu atau giling dengan menggunakan penggiling mekanik. Saring tepungnya untuk memperoleh ukuran partikel-partikel yang seragam.