LAMPIRAN 1. Contoh bentuk tally-sheet pengukuran pohon-pohon dalam petak ukur 50 X 50 m untuk mencari dimensi Dbh dan tinggi dari pohon-pohon contoh untuk penyusunan tabel isi pohon hutan tanaman

Perusahaan HPHTI PT Sumatera Silva Lestari

<table>
<thead>
<tr>
<th>Komplek hutan</th>
<th>RPH</th>
</tr>
</thead>
<tbody>
<tr>
<td>BKPH/RDK</td>
<td>KPH/CDK</td>
</tr>
<tr>
<td>Dinas Kehutanan</td>
<td>Jenis tanaman : Acacia mangium</td>
</tr>
<tr>
<td>Objek penelitian ke</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No.</th>
<th>Dbh (cm)</th>
<th>Pemecahan alat</th>
<th>Tinggi total (m)</th>
<th>Tinggi bebas cabang (m)</th>
<th>Volume Total (m³)</th>
<th>Volume bebas cabang (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Base (%)</td>
<td>Top (T. tot) (%)</td>
<td>Top (T. Bc) (%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tanggal pengukuran :
Nama pengukuran Dbh : Pencatat :
Nama pengukuran Tinggi : Pencatat :
Alat pengukur tinggi :
Alat pengukur diameter :

Universitas Sumatera Utara
Lampiran 2. Peta Kerja HPHTI PT Sumatera Sylva Lestari, Sector Pasir Pengarayan, Riau
Lampiran 3. Peta Kerja HPHT1 PT Sumatera Sylva Lestari, Sector Pasir Pengarayan Tanaman Umur 3 Tahun
Lampiran 4. Peta Kerja HPHTI PT Sumatera Sylva Lestari, Sector Pasir Pengarayan Tanaman Umur 5 dan 7 Tahun

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>PY (AMYY)</th>
<th>SSA (HA)</th>
<th>NSSA (HA)</th>
<th>TOTAL (HA)</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMG</td>
<td>06 99</td>
<td>25.5</td>
<td>25.5</td>
<td></td>
<td>RAWA</td>
</tr>
<tr>
<td>AMG</td>
<td>03 00</td>
<td>10.9</td>
<td>10.9</td>
<td></td>
<td>JALAN</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>82.5 12.7</td>
<td>95.2</td>
</tr>
</tbody>
</table>

PT. SUMATERA SYLVA LESTARI
SECTOR PASIR PENGARAYAN

Universitas Sumatera Utara
Lampiran 5. Peta Kerja IPIHTI Pt Sumatera Sylva Lestari, Sector Pasir Pengarayan Tanaman Umur 6 Tahun

<table>
<thead>
<tr>
<th>STAND</th>
<th>SPECIES</th>
<th>P"(MBP"")</th>
<th>SSA(HA)</th>
<th>NSSA(HA)</th>
<th>TOTAL(HA)</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>925</td>
<td>15.6</td>
<td>17.1</td>
<td>92.7</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>15.6</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>15.6</td>
<td>15.6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>15.6</td>
<td>15.6</td>
<td></td>
</tr>
</tbody>
</table>

PT. SUMATERA SYLVA LESTARI
SECTOR PASIR PENGARAYAN

Universitas Sumatera Utara
Lampiran 6. Peta Kerja HPHTI PT Sumatera Sylva Lestari, Sector Pasir
Pengarayan Tanaman Umur 8 Tahun

PT. SUMATERA RANG LESTARI (PT. SRL.)
SECTOR: PASIR PANGARAYAN (PPR)
SKALA 1 : 16,000

COMPT: 73
LUAS: 73.7 ha

Supv. HPL
HPL Manager

Universitas Sumatera Utara
<table>
<thead>
<tr>
<th>No.</th>
<th>Dbh (Cm)</th>
<th>Tinggi (M)</th>
<th>Volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.7</td>
<td>6.9</td>
<td>0.0045</td>
</tr>
<tr>
<td>2</td>
<td>3.8</td>
<td>6.1</td>
<td>0.0042</td>
</tr>
<tr>
<td>3</td>
<td>4.6</td>
<td>8.1</td>
<td>0.0081</td>
</tr>
<tr>
<td>4</td>
<td>5.1</td>
<td>7.5</td>
<td>0.0092</td>
</tr>
<tr>
<td>5</td>
<td>5.2</td>
<td>7.7</td>
<td>0.0098</td>
</tr>
<tr>
<td>6</td>
<td>5.3</td>
<td>8.3</td>
<td>0.0110</td>
</tr>
<tr>
<td>7</td>
<td>5.4</td>
<td>7.3</td>
<td>0.0100</td>
</tr>
<tr>
<td>8</td>
<td>5.5</td>
<td>9.3</td>
<td>0.0133</td>
</tr>
<tr>
<td>9</td>
<td>6.1</td>
<td>9.7</td>
<td>0.0170</td>
</tr>
<tr>
<td>10</td>
<td>6.4</td>
<td>11.7</td>
<td>0.0226</td>
</tr>
<tr>
<td>11</td>
<td>7.2</td>
<td>10.1</td>
<td>0.0247</td>
</tr>
<tr>
<td>12</td>
<td>7.2</td>
<td>11.1</td>
<td>0.0271</td>
</tr>
<tr>
<td>13</td>
<td>7.6</td>
<td>9.1</td>
<td>0.0248</td>
</tr>
<tr>
<td>14</td>
<td>7.8</td>
<td>11.3</td>
<td>0.0324</td>
</tr>
<tr>
<td>15</td>
<td>8.2</td>
<td>10.5</td>
<td>0.0333</td>
</tr>
<tr>
<td>16</td>
<td>8.3</td>
<td>9.3</td>
<td>0.0302</td>
</tr>
<tr>
<td>17</td>
<td>8.7</td>
<td>8.5</td>
<td>0.0303</td>
</tr>
<tr>
<td>18</td>
<td>9.1</td>
<td>10.9</td>
<td>0.0425</td>
</tr>
<tr>
<td>19</td>
<td>9.1</td>
<td>8.1</td>
<td>0.0316</td>
</tr>
<tr>
<td>20</td>
<td>9.5</td>
<td>10.7</td>
<td>0.0455</td>
</tr>
<tr>
<td>21</td>
<td>9.5</td>
<td>14.7</td>
<td>0.0625</td>
</tr>
<tr>
<td>22</td>
<td>10</td>
<td>11.1</td>
<td>0.0523</td>
</tr>
<tr>
<td>23</td>
<td>10.1</td>
<td>8.3</td>
<td>0.0399</td>
</tr>
<tr>
<td>24</td>
<td>10.2</td>
<td>13.9</td>
<td>0.0681</td>
</tr>
<tr>
<td>25</td>
<td>10.3</td>
<td>11.1</td>
<td>0.0555</td>
</tr>
<tr>
<td>26</td>
<td>10.6</td>
<td>11.3</td>
<td>0.0598</td>
</tr>
<tr>
<td>27</td>
<td>10.8</td>
<td>11.3</td>
<td>0.0621</td>
</tr>
<tr>
<td>28</td>
<td>10.8</td>
<td>7.3</td>
<td>0.0401</td>
</tr>
<tr>
<td>29</td>
<td>11.2</td>
<td>13.7</td>
<td>0.0810</td>
</tr>
<tr>
<td>30</td>
<td>11.3</td>
<td>11.5</td>
<td>0.0692</td>
</tr>
<tr>
<td>31</td>
<td>11.4</td>
<td>11.9</td>
<td>0.0729</td>
</tr>
<tr>
<td>32</td>
<td>11.7</td>
<td>14.1</td>
<td>0.0910</td>
</tr>
<tr>
<td>33</td>
<td>11.7</td>
<td>9.1</td>
<td>0.0587</td>
</tr>
<tr>
<td>34</td>
<td>12</td>
<td>14.3</td>
<td>0.0970</td>
</tr>
<tr>
<td>35</td>
<td>12.3</td>
<td>12.1</td>
<td>0.0863</td>
</tr>
<tr>
<td>36</td>
<td>12.4</td>
<td>9.7</td>
<td>0.0703</td>
</tr>
<tr>
<td>37</td>
<td>12.4</td>
<td>11.3</td>
<td>0.0819</td>
</tr>
<tr>
<td>38</td>
<td>12.5</td>
<td>12.5</td>
<td>0.0920</td>
</tr>
<tr>
<td>39</td>
<td>12.6</td>
<td>13.5</td>
<td>0.1010</td>
</tr>
<tr>
<td>40</td>
<td>12.7</td>
<td>12.3</td>
<td>0.0935</td>
</tr>
<tr>
<td>41</td>
<td>12.8</td>
<td>12.3</td>
<td>0.0950</td>
</tr>
<tr>
<td>42</td>
<td>13.1</td>
<td>14.3</td>
<td>0.1156</td>
</tr>
<tr>
<td>43</td>
<td>13.2</td>
<td>9.3</td>
<td>0.0764</td>
</tr>
<tr>
<td>44</td>
<td>13.4</td>
<td>13.1</td>
<td>0.1108</td>
</tr>
<tr>
<td>45</td>
<td>13.7</td>
<td>12.1</td>
<td>0.1070</td>
</tr>
<tr>
<td>46</td>
<td>14.2</td>
<td>10.9</td>
<td>0.1036</td>
</tr>
<tr>
<td>47</td>
<td>14.2</td>
<td>12.5</td>
<td>0.1188</td>
</tr>
<tr>
<td>48</td>
<td>14.4</td>
<td>12.5</td>
<td>0.1221</td>
</tr>
<tr>
<td>49</td>
<td>14.5</td>
<td>13.7</td>
<td>0.1357</td>
</tr>
<tr>
<td>50</td>
<td>14.6</td>
<td>9.3</td>
<td>0.0934</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>51</td>
<td>14.6</td>
<td>13.7</td>
<td>0.1376</td>
</tr>
<tr>
<td>52</td>
<td>14.7</td>
<td>12.7</td>
<td>0.1293</td>
</tr>
<tr>
<td>53</td>
<td>15.1</td>
<td>12.1</td>
<td>0.1300</td>
</tr>
<tr>
<td>54</td>
<td>15.3</td>
<td>13.5</td>
<td>0.1489</td>
</tr>
<tr>
<td>55</td>
<td>15.6</td>
<td>11.7</td>
<td>0.1342</td>
</tr>
<tr>
<td>56</td>
<td>16.1</td>
<td>13.9</td>
<td>0.1696</td>
</tr>
<tr>
<td>57</td>
<td>16.2</td>
<td>9.9</td>
<td>0.1224</td>
</tr>
<tr>
<td>58</td>
<td>16.7</td>
<td>12.3</td>
<td>0.1617</td>
</tr>
<tr>
<td>59</td>
<td>16.7</td>
<td>12.9</td>
<td>0.1695</td>
</tr>
<tr>
<td>60</td>
<td>18.8</td>
<td>9.5</td>
<td>0.1582</td>
</tr>
<tr>
<td>Rata²</td>
<td>11.0</td>
<td>11.0</td>
<td>0.0735</td>
</tr>
</tbody>
</table>
Lampiran 8. Data Tanaman Umur 5 Tahun untuk Penyusunan Model Volume Pohon Cara Regresi

<table>
<thead>
<tr>
<th>No.</th>
<th>Dbh (Cm)</th>
<th>Tinggi (m)</th>
<th>Volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>7.6</td>
<td>0.0175</td>
</tr>
<tr>
<td>2</td>
<td>8.4</td>
<td>10.9</td>
<td>0.0362</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>12.3</td>
<td>0.0469</td>
</tr>
<tr>
<td>4</td>
<td>10.3</td>
<td>14.5</td>
<td>0.0725</td>
</tr>
<tr>
<td>5</td>
<td>10.7</td>
<td>10.1</td>
<td>0.0545</td>
</tr>
<tr>
<td>6</td>
<td>11.1</td>
<td>15.5</td>
<td>0.0900</td>
</tr>
<tr>
<td>7</td>
<td>11.5</td>
<td>16.5</td>
<td>0.1028</td>
</tr>
<tr>
<td>8</td>
<td>11.7</td>
<td>18.9</td>
<td>0.1219</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>21.7</td>
<td>0.1473</td>
</tr>
<tr>
<td>10</td>
<td>12.3</td>
<td>8.7</td>
<td>0.0620</td>
</tr>
<tr>
<td>11</td>
<td>12.4</td>
<td>19.9</td>
<td>0.1442</td>
</tr>
<tr>
<td>12</td>
<td>12.8</td>
<td>11.7</td>
<td>0.0903</td>
</tr>
<tr>
<td>13</td>
<td>13.1</td>
<td>19.9</td>
<td>0.1609</td>
</tr>
<tr>
<td>14</td>
<td>13.4</td>
<td>15.1</td>
<td>0.1278</td>
</tr>
<tr>
<td>15</td>
<td>13.5</td>
<td>10.7</td>
<td>0.0919</td>
</tr>
<tr>
<td>16</td>
<td>13.9</td>
<td>17.5</td>
<td>0.1593</td>
</tr>
<tr>
<td>17</td>
<td>14.2</td>
<td>15.5</td>
<td>0.1473</td>
</tr>
<tr>
<td>18</td>
<td>14.5</td>
<td>16.1</td>
<td>0.1595</td>
</tr>
<tr>
<td>19</td>
<td>14.5</td>
<td>8.1</td>
<td>0.0803</td>
</tr>
<tr>
<td>20</td>
<td>14.6</td>
<td>20.9</td>
<td>0.2099</td>
</tr>
<tr>
<td>21</td>
<td>14.7</td>
<td>16.1</td>
<td>0.1639</td>
</tr>
<tr>
<td>22</td>
<td>15</td>
<td>6.5</td>
<td>0.0689</td>
</tr>
<tr>
<td>23</td>
<td>15.3</td>
<td>21.3</td>
<td>0.2350</td>
</tr>
<tr>
<td>24</td>
<td>15.6</td>
<td>10.5</td>
<td>0.1204</td>
</tr>
<tr>
<td>25</td>
<td>15.8</td>
<td>23.3</td>
<td>0.2741</td>
</tr>
<tr>
<td>26</td>
<td>16.2</td>
<td>9.5</td>
<td>0.1175</td>
</tr>
<tr>
<td>27</td>
<td>16.3</td>
<td>23.5</td>
<td>0.2942</td>
</tr>
<tr>
<td>28</td>
<td>16.3</td>
<td>18.9</td>
<td>0.2366</td>
</tr>
<tr>
<td>29</td>
<td>16.4</td>
<td>13.1</td>
<td>0.1660</td>
</tr>
<tr>
<td>30</td>
<td>17</td>
<td>24.1</td>
<td>0.3282</td>
</tr>
<tr>
<td>31</td>
<td>17.2</td>
<td>11.1</td>
<td>0.1547</td>
</tr>
<tr>
<td>32</td>
<td>17.5</td>
<td>12.9</td>
<td>0.1862</td>
</tr>
<tr>
<td>33</td>
<td>17.5</td>
<td>19.3</td>
<td>0.2785</td>
</tr>
<tr>
<td>34</td>
<td>18</td>
<td>12.3</td>
<td>0.1878</td>
</tr>
<tr>
<td>35</td>
<td>18.1</td>
<td>22.3</td>
<td>0.3443</td>
</tr>
<tr>
<td>36</td>
<td>18.1</td>
<td>20.3</td>
<td>0.3134</td>
</tr>
<tr>
<td>37</td>
<td>18.1</td>
<td>20.9</td>
<td>0.3227</td>
</tr>
<tr>
<td>38</td>
<td>18.6</td>
<td>20.9</td>
<td>0.3407</td>
</tr>
<tr>
<td>39</td>
<td>18.7</td>
<td>23.9</td>
<td>0.3938</td>
</tr>
<tr>
<td>40</td>
<td>18.7</td>
<td>14.3</td>
<td>0.2356</td>
</tr>
<tr>
<td>41</td>
<td>19.1</td>
<td>17.7</td>
<td>0.3043</td>
</tr>
<tr>
<td>42</td>
<td>19.4</td>
<td>14.3</td>
<td>0.2536</td>
</tr>
<tr>
<td>43</td>
<td>19.7</td>
<td>21.5</td>
<td>0.3932</td>
</tr>
<tr>
<td>44</td>
<td>20</td>
<td>21.3</td>
<td>0.4015</td>
</tr>
<tr>
<td>45</td>
<td>20.2</td>
<td>21.9</td>
<td>0.4211</td>
</tr>
<tr>
<td>46</td>
<td>20.2</td>
<td>22.5</td>
<td>0.4326</td>
</tr>
<tr>
<td>47</td>
<td>21.4</td>
<td>16.7</td>
<td>0.3604</td>
</tr>
<tr>
<td>48</td>
<td>21.5</td>
<td>23.7</td>
<td>0.5163</td>
</tr>
<tr>
<td>49</td>
<td>21.5</td>
<td>19.7</td>
<td>0.4291</td>
</tr>
<tr>
<td>50</td>
<td>21.7</td>
<td>24.3</td>
<td>0.5392</td>
</tr>
</tbody>
</table>
Lanjutan Lampiran 8.

<table>
<thead>
<tr>
<th></th>
<th>21,8</th>
<th>23,5</th>
<th>0,5263</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>22</td>
<td>18,1</td>
<td>0,4128</td>
</tr>
<tr>
<td>53</td>
<td>22,8</td>
<td>23,7</td>
<td>0,5806</td>
</tr>
<tr>
<td>54</td>
<td>23,2</td>
<td>17,5</td>
<td>0,4439</td>
</tr>
<tr>
<td>55</td>
<td>23,2</td>
<td>21,5</td>
<td>0,5453</td>
</tr>
<tr>
<td>56</td>
<td>23,8</td>
<td>22,7</td>
<td>0,6059</td>
</tr>
<tr>
<td>57</td>
<td>24,6</td>
<td>20,5</td>
<td>0,5846</td>
</tr>
<tr>
<td>58</td>
<td>25</td>
<td>22,5</td>
<td>0,6627</td>
</tr>
<tr>
<td>59</td>
<td>26,4</td>
<td>22,9</td>
<td>0,7521</td>
</tr>
<tr>
<td>60</td>
<td>26,8</td>
<td>22,7</td>
<td>0,7683</td>
</tr>
<tr>
<td>Rata²</td>
<td>17,1</td>
<td>17,6</td>
<td>0,2803</td>
</tr>
</tbody>
</table>
Lampiran 9. Data Tanaman Umur 6 Tahun untuk Pencyusunan Model Volume Pohon Cara Regresi

<table>
<thead>
<tr>
<th>No.</th>
<th>Dbh (Cm)</th>
<th>Tinggi (m)</th>
<th>Volume (m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.5</td>
<td>8.3</td>
<td>0.0165</td>
</tr>
<tr>
<td>2</td>
<td>7.6</td>
<td>10.1</td>
<td>0.0275</td>
</tr>
<tr>
<td>3</td>
<td>8.2</td>
<td>8.9</td>
<td>0.0282</td>
</tr>
<tr>
<td>4</td>
<td>8.7</td>
<td>7.1</td>
<td>0.0253</td>
</tr>
<tr>
<td>5</td>
<td>9.4</td>
<td>8.1</td>
<td>0.0337</td>
</tr>
<tr>
<td>6</td>
<td>9.8</td>
<td>9.1</td>
<td>0.0412</td>
</tr>
<tr>
<td>7</td>
<td>9.8</td>
<td>14.9</td>
<td>0.0674</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>14.7</td>
<td>0.0693</td>
</tr>
<tr>
<td>9</td>
<td>10.2</td>
<td>5.5</td>
<td>0.0270</td>
</tr>
<tr>
<td>10</td>
<td>10.8</td>
<td>9.9</td>
<td>0.0544</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11.7</td>
<td>0.0667</td>
</tr>
<tr>
<td>12</td>
<td>11</td>
<td>9.7</td>
<td>0.0553</td>
</tr>
<tr>
<td>13</td>
<td>11.5</td>
<td>12.9</td>
<td>0.0804</td>
</tr>
<tr>
<td>14</td>
<td>11.8</td>
<td>10.7</td>
<td>0.0702</td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>14.7</td>
<td>0.0998</td>
</tr>
<tr>
<td>16</td>
<td>12.3</td>
<td>9.9</td>
<td>0.0706</td>
</tr>
<tr>
<td>17</td>
<td>12.4</td>
<td>18.1</td>
<td>0.1311</td>
</tr>
<tr>
<td>18</td>
<td>12.9</td>
<td>9.1</td>
<td>0.0714</td>
</tr>
<tr>
<td>19</td>
<td>13.3</td>
<td>18.3</td>
<td>0.1525</td>
</tr>
<tr>
<td>20</td>
<td>13.6</td>
<td>12.3</td>
<td>0.1072</td>
</tr>
<tr>
<td>21</td>
<td>13.6</td>
<td>13.9</td>
<td>0.1212</td>
</tr>
<tr>
<td>22</td>
<td>13.6</td>
<td>21.9</td>
<td>0.1909</td>
</tr>
<tr>
<td>23</td>
<td>13.9</td>
<td>15.5</td>
<td>0.1411</td>
</tr>
<tr>
<td>24</td>
<td>14.4</td>
<td>12.3</td>
<td>0.1202</td>
</tr>
<tr>
<td>25</td>
<td>14.6</td>
<td>21.5</td>
<td>0.2160</td>
</tr>
<tr>
<td>26</td>
<td>14.9</td>
<td>16.5</td>
<td>0.1726</td>
</tr>
<tr>
<td>27</td>
<td>15</td>
<td>16.7</td>
<td>0.1771</td>
</tr>
<tr>
<td>28</td>
<td>15.2</td>
<td>16.7</td>
<td>0.1818</td>
</tr>
<tr>
<td>29</td>
<td>15.3</td>
<td>10.3</td>
<td>0.1136</td>
</tr>
<tr>
<td>30</td>
<td>15.4</td>
<td>26.3</td>
<td>0.2939</td>
</tr>
<tr>
<td>31</td>
<td>15.5</td>
<td>22.7</td>
<td>0.2570</td>
</tr>
<tr>
<td>32</td>
<td>15.7</td>
<td>16.7</td>
<td>0.1940</td>
</tr>
<tr>
<td>33</td>
<td>16</td>
<td>16.7</td>
<td>0.2015</td>
</tr>
<tr>
<td>34</td>
<td>16.2</td>
<td>24.7</td>
<td>0.3055</td>
</tr>
<tr>
<td>35</td>
<td>16.3</td>
<td>18.5</td>
<td>0.2316</td>
</tr>
<tr>
<td>36</td>
<td>16.7</td>
<td>18.3</td>
<td>0.2405</td>
</tr>
<tr>
<td>37</td>
<td>16.8</td>
<td>9.7</td>
<td>0.1290</td>
</tr>
<tr>
<td>38</td>
<td>16.8</td>
<td>20.9</td>
<td>0.2780</td>
</tr>
<tr>
<td>39</td>
<td>17</td>
<td>19.1</td>
<td>0.2601</td>
</tr>
<tr>
<td>40</td>
<td>17.3</td>
<td>23.9</td>
<td>0.3371</td>
</tr>
<tr>
<td>41</td>
<td>17.4</td>
<td>8.3</td>
<td>0.1194</td>
</tr>
<tr>
<td>42</td>
<td>17.5</td>
<td>19.5</td>
<td>0.2814</td>
</tr>
<tr>
<td>43</td>
<td>18</td>
<td>9.5</td>
<td>0.1450</td>
</tr>
<tr>
<td>44</td>
<td>18.5</td>
<td>21.7</td>
<td>0.3500</td>
</tr>
<tr>
<td>45</td>
<td>19.5</td>
<td>11.1</td>
<td>0.1989</td>
</tr>
<tr>
<td>46</td>
<td>20.2</td>
<td>22.3</td>
<td>0.4288</td>
</tr>
<tr>
<td>47</td>
<td>21</td>
<td>21.3</td>
<td>0.4426</td>
</tr>
<tr>
<td>48</td>
<td>21.2</td>
<td>11.1</td>
<td>0.2351</td>
</tr>
<tr>
<td>49</td>
<td>21.8</td>
<td>20.5</td>
<td>0.4591</td>
</tr>
<tr>
<td>50</td>
<td>22</td>
<td>16.3</td>
<td>0.3718</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>51</td>
<td>22,5</td>
<td>21,5</td>
<td>0,5129</td>
</tr>
<tr>
<td>52</td>
<td>22,5</td>
<td>16,3</td>
<td>0,3889</td>
</tr>
<tr>
<td>53</td>
<td>23</td>
<td>21,9</td>
<td>0,5459</td>
</tr>
<tr>
<td>54</td>
<td>23,6</td>
<td>13,7</td>
<td>0,3596</td>
</tr>
<tr>
<td>55</td>
<td>23,7</td>
<td>18,3</td>
<td>0,4844</td>
</tr>
<tr>
<td>56</td>
<td>25,2</td>
<td>19,9</td>
<td>0,5955</td>
</tr>
<tr>
<td>57</td>
<td>26</td>
<td>27,7</td>
<td>0,8824</td>
</tr>
<tr>
<td>58</td>
<td>26,1</td>
<td>24,5</td>
<td>0,7865</td>
</tr>
<tr>
<td>59</td>
<td>26,3</td>
<td>20,3</td>
<td>0,6617</td>
</tr>
<tr>
<td>60</td>
<td>27,8</td>
<td>25,3</td>
<td>0,9214</td>
</tr>
<tr>
<td>Rata</td>
<td>16,1</td>
<td>16,0</td>
<td>0,2438</td>
</tr>
</tbody>
</table>
Lampiran 10. Data Tanaman Umur 7 Tahun untuk Penyusunan Model Volume Pohon Cara Regresi

<table>
<thead>
<tr>
<th>No.</th>
<th>Dbh (Cm)</th>
<th>Tinggi (m)</th>
<th>Volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7,3</td>
<td>9,5</td>
<td>0,0239</td>
</tr>
<tr>
<td>2</td>
<td>8,6</td>
<td>7,7</td>
<td>0,0268</td>
</tr>
<tr>
<td>3</td>
<td>8,8</td>
<td>10,9</td>
<td>0,0398</td>
</tr>
<tr>
<td>4</td>
<td>9,8</td>
<td>12,5</td>
<td>0,0566</td>
</tr>
<tr>
<td>5</td>
<td>10,6</td>
<td>7,9</td>
<td>0,0418</td>
</tr>
<tr>
<td>6</td>
<td>11</td>
<td>17,9</td>
<td>0,1021</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>11,3</td>
<td>0,0644</td>
</tr>
<tr>
<td>8</td>
<td>11,6</td>
<td>9,1</td>
<td>0,0577</td>
</tr>
<tr>
<td>9</td>
<td>12,2</td>
<td>13,7</td>
<td>0,0961</td>
</tr>
<tr>
<td>10</td>
<td>12,2</td>
<td>6,3</td>
<td>0,0442</td>
</tr>
<tr>
<td>11</td>
<td>13,5</td>
<td>8,1</td>
<td>0,0696</td>
</tr>
<tr>
<td>12</td>
<td>14,1</td>
<td>14,7</td>
<td>0,1377</td>
</tr>
<tr>
<td>13</td>
<td>14,3</td>
<td>13,9</td>
<td>0,1339</td>
</tr>
<tr>
<td>14</td>
<td>14,5</td>
<td>10,7</td>
<td>0,1060</td>
</tr>
<tr>
<td>15</td>
<td>14,5</td>
<td>20,3</td>
<td>0,2011</td>
</tr>
<tr>
<td>16</td>
<td>14,7</td>
<td>20,1</td>
<td>0,2047</td>
</tr>
<tr>
<td>17</td>
<td>15,3</td>
<td>10,3</td>
<td>0,1136</td>
</tr>
<tr>
<td>18</td>
<td>15,3</td>
<td>16,3</td>
<td>0,1798</td>
</tr>
<tr>
<td>19</td>
<td>15,5</td>
<td>15,1</td>
<td>0,1710</td>
</tr>
<tr>
<td>20</td>
<td>16,2</td>
<td>21,7</td>
<td>0,2684</td>
</tr>
<tr>
<td>21</td>
<td>16,2</td>
<td>16,9</td>
<td>0,2090</td>
</tr>
<tr>
<td>22</td>
<td>16,5</td>
<td>17,7</td>
<td>0,2271</td>
</tr>
<tr>
<td>23</td>
<td>16,8</td>
<td>11,3</td>
<td>0,1503</td>
</tr>
<tr>
<td>24</td>
<td>16,8</td>
<td>16,3</td>
<td>0,2168</td>
</tr>
<tr>
<td>25</td>
<td>17</td>
<td>17,1</td>
<td>0,2329</td>
</tr>
<tr>
<td>26</td>
<td>17,5</td>
<td>18,3</td>
<td>0,2641</td>
</tr>
<tr>
<td>27</td>
<td>17,6</td>
<td>22,1</td>
<td>0,3226</td>
</tr>
<tr>
<td>28</td>
<td>17,8</td>
<td>10,9</td>
<td>0,1627</td>
</tr>
<tr>
<td>29</td>
<td>18</td>
<td>8,7</td>
<td>0,1328</td>
</tr>
<tr>
<td>30</td>
<td>18,2</td>
<td>23,9</td>
<td>0,3731</td>
</tr>
<tr>
<td>31</td>
<td>18,2</td>
<td>10,9</td>
<td>0,1701</td>
</tr>
<tr>
<td>32</td>
<td>19</td>
<td>9,9</td>
<td>0,1684</td>
</tr>
<tr>
<td>33</td>
<td>19,1</td>
<td>10,3</td>
<td>0,1771</td>
</tr>
<tr>
<td>34</td>
<td>19,3</td>
<td>24,1</td>
<td>0,4230</td>
</tr>
<tr>
<td>35</td>
<td>19,3</td>
<td>18,7</td>
<td>0,3282</td>
</tr>
<tr>
<td>36</td>
<td>19,5</td>
<td>18,3</td>
<td>0,3279</td>
</tr>
<tr>
<td>37</td>
<td>20,3</td>
<td>19,9</td>
<td>0,3864</td>
</tr>
<tr>
<td>38</td>
<td>20,6</td>
<td>12,9</td>
<td>0,2580</td>
</tr>
<tr>
<td>39</td>
<td>21</td>
<td>23,1</td>
<td>0,4801</td>
</tr>
<tr>
<td>40</td>
<td>21,2</td>
<td>12,1</td>
<td>0,2583</td>
</tr>
<tr>
<td>41</td>
<td>21,7</td>
<td>20,5</td>
<td>0,4549</td>
</tr>
<tr>
<td>42</td>
<td>22</td>
<td>11,9</td>
<td>0,2714</td>
</tr>
<tr>
<td>43</td>
<td>22,2</td>
<td>20,1</td>
<td>0,4668</td>
</tr>
<tr>
<td>44</td>
<td>22,3</td>
<td>21,7</td>
<td>0,5085</td>
</tr>
<tr>
<td>45</td>
<td>22,3</td>
<td>23,3</td>
<td>0,5460</td>
</tr>
<tr>
<td>46</td>
<td>22,4</td>
<td>13,1</td>
<td>0,3097</td>
</tr>
<tr>
<td>47</td>
<td>22,6</td>
<td>21,7</td>
<td>0,5223</td>
</tr>
<tr>
<td>48</td>
<td>23,5</td>
<td>21,3</td>
<td>0,5543</td>
</tr>
<tr>
<td>49</td>
<td>23,5</td>
<td>22,3</td>
<td>0,5803</td>
</tr>
<tr>
<td>50</td>
<td>23,6</td>
<td>22,3</td>
<td>0,5853</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
</tr>
<tr>
<td>51</td>
<td>24,3</td>
<td>18,3</td>
<td>0,5092</td>
</tr>
<tr>
<td>52</td>
<td>25,6</td>
<td>17,7</td>
<td>0,5466</td>
</tr>
<tr>
<td>53</td>
<td>26</td>
<td>22,3</td>
<td>0,7104</td>
</tr>
<tr>
<td>54</td>
<td>26</td>
<td>23,9</td>
<td>0,7614</td>
</tr>
<tr>
<td>55</td>
<td>26,2</td>
<td>22,3</td>
<td>0,7214</td>
</tr>
<tr>
<td>56</td>
<td>27</td>
<td>12,5</td>
<td>0,4294</td>
</tr>
<tr>
<td>57</td>
<td>29,1</td>
<td>23,7</td>
<td>0,9457</td>
</tr>
<tr>
<td>58</td>
<td>29,5</td>
<td>23,1</td>
<td>0,9473</td>
</tr>
<tr>
<td>59</td>
<td>31,2</td>
<td>23,1</td>
<td>1,0596</td>
</tr>
<tr>
<td>60</td>
<td>32,2</td>
<td>23,1</td>
<td>1,1287</td>
</tr>
<tr>
<td>Rata*</td>
<td>18,7</td>
<td>16,5</td>
<td>0,3328</td>
</tr>
</tbody>
</table>
Lampiran 11. Data Tanaman Umur 8 Tahun untuk Penyusunan Model Volume Pohon Cara Regresi

<table>
<thead>
<tr>
<th>No.</th>
<th>Dbh (Cm)</th>
<th>Tinggi (m)</th>
<th>Volume (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8,1</td>
<td>10,7</td>
<td>0,0331</td>
</tr>
<tr>
<td>2</td>
<td>9,5</td>
<td>13,1</td>
<td>0,0557</td>
</tr>
<tr>
<td>3</td>
<td>9,8</td>
<td>10,1</td>
<td>0,0439</td>
</tr>
<tr>
<td>4</td>
<td>10,3</td>
<td>10,1</td>
<td>0,0505</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>5,5</td>
<td>0,0314</td>
</tr>
<tr>
<td>6</td>
<td>11,2</td>
<td>19,1</td>
<td>0,1129</td>
</tr>
<tr>
<td>7</td>
<td>12,5</td>
<td>24,1</td>
<td>0,1775</td>
</tr>
<tr>
<td>8</td>
<td>13,1</td>
<td>18,1</td>
<td>0,1464</td>
</tr>
<tr>
<td>9</td>
<td>13,7</td>
<td>15,5</td>
<td>0,1371</td>
</tr>
<tr>
<td>10</td>
<td>14,6</td>
<td>13,9</td>
<td>0,1396</td>
</tr>
<tr>
<td>11</td>
<td>15,1</td>
<td>16,7</td>
<td>0,1794</td>
</tr>
<tr>
<td>12</td>
<td>15,2</td>
<td>21,1</td>
<td>0,2297</td>
</tr>
<tr>
<td>13</td>
<td>15,2</td>
<td>22,3</td>
<td>0,2428</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>15,1</td>
<td>0,1822</td>
</tr>
<tr>
<td>15</td>
<td>16,2</td>
<td>17,3</td>
<td>0,2140</td>
</tr>
<tr>
<td>16</td>
<td>16,3</td>
<td>22,7</td>
<td>0,2842</td>
</tr>
<tr>
<td>17</td>
<td>16,5</td>
<td>25,3</td>
<td>0,3246</td>
</tr>
<tr>
<td>18</td>
<td>17,2</td>
<td>17,5</td>
<td>0,2440</td>
</tr>
<tr>
<td>19</td>
<td>17,4</td>
<td>23,7</td>
<td>0,3381</td>
</tr>
<tr>
<td>20</td>
<td>17,6</td>
<td>25,3</td>
<td>0,3693</td>
</tr>
<tr>
<td>21</td>
<td>18,2</td>
<td>26,1</td>
<td>0,4074</td>
</tr>
<tr>
<td>22</td>
<td>18,4</td>
<td>17,9</td>
<td>0,2856</td>
</tr>
<tr>
<td>23</td>
<td>19,3</td>
<td>24,1</td>
<td>0,4230</td>
</tr>
<tr>
<td>24</td>
<td>19,3</td>
<td>26,3</td>
<td>0,4616</td>
</tr>
<tr>
<td>25</td>
<td>19,7</td>
<td>18,5</td>
<td>0,3383</td>
</tr>
<tr>
<td>26</td>
<td>19,8</td>
<td>25,3</td>
<td>0,4674</td>
</tr>
<tr>
<td>27</td>
<td>20,2</td>
<td>25,3</td>
<td>0,4865</td>
</tr>
<tr>
<td>28</td>
<td>20,2</td>
<td>21,5</td>
<td>0,4134</td>
</tr>
<tr>
<td>29</td>
<td>20,6</td>
<td>25,5</td>
<td>0,5099</td>
</tr>
<tr>
<td>30</td>
<td>20,6</td>
<td>24,5</td>
<td>0,4899</td>
</tr>
<tr>
<td>31</td>
<td>20,7</td>
<td>20,1</td>
<td>0,4059</td>
</tr>
<tr>
<td>32</td>
<td>20,7</td>
<td>25,5</td>
<td>0,5149</td>
</tr>
<tr>
<td>33</td>
<td>21</td>
<td>23,7</td>
<td>0,4925</td>
</tr>
<tr>
<td>34</td>
<td>21,2</td>
<td>28,5</td>
<td>0,6036</td>
</tr>
<tr>
<td>35</td>
<td>21,3</td>
<td>23,5</td>
<td>0,5024</td>
</tr>
<tr>
<td>36</td>
<td>22,1</td>
<td>28,1</td>
<td>0,6467</td>
</tr>
<tr>
<td>37</td>
<td>22,7</td>
<td>13,9</td>
<td>0,3375</td>
</tr>
<tr>
<td>38</td>
<td>22,9</td>
<td>16,3</td>
<td>0,4028</td>
</tr>
<tr>
<td>39</td>
<td>23,9</td>
<td>26,5</td>
<td>0,7133</td>
</tr>
<tr>
<td>40</td>
<td>24,1</td>
<td>25,7</td>
<td>0,7034</td>
</tr>
<tr>
<td>41</td>
<td>24,5</td>
<td>17,9</td>
<td>0,5063</td>
</tr>
<tr>
<td>42</td>
<td>24,7</td>
<td>27,7</td>
<td>0,7964</td>
</tr>
<tr>
<td>43</td>
<td>24,8</td>
<td>27,9</td>
<td>0,8086</td>
</tr>
<tr>
<td>44</td>
<td>25,3</td>
<td>26,1</td>
<td>0,7873</td>
</tr>
<tr>
<td>45</td>
<td>25,3</td>
<td>17,9</td>
<td>0,5399</td>
</tr>
<tr>
<td>46</td>
<td>25,7</td>
<td>27,3</td>
<td>0,8497</td>
</tr>
<tr>
<td>47</td>
<td>26,1</td>
<td>28,9</td>
<td>0,9277</td>
</tr>
<tr>
<td>48</td>
<td>26,3</td>
<td>26,1</td>
<td>0,8507</td>
</tr>
<tr>
<td>49</td>
<td>26,5</td>
<td>27,7</td>
<td>0,9167</td>
</tr>
<tr>
<td>50</td>
<td>26,8</td>
<td>28,5</td>
<td>0,9646</td>
</tr>
</tbody>
</table>
Lanjutan Lampiran 11.

51	27,2	25,1	0,8751
52	27,8	26,9	0,9656
53	28,4	21,1	0,8020
54	29,4	27,9	1,1364
55	29,4	23,3	0,9491
56	29,8	27,7	1,1592
57	30,1	26,9	1,1485
58	30,1	27,1	1,1570
59	32,4	28,1	1,3901
60	33,6	26,5	1,4098
Rata²	20,8	22,2	0,5347
Lampiran 12. Tabel Volume Dengan Dua Pembuka
Tabel Volume Pohon *Acacia mangium* untuk HTI
PT Sumatera Sylva Lestari Pasir Pangarayan
Kecamatan Rambah Hilir Kabupaten Rokan Hulu-Riau
(0,0000471 Ddbh²)\(h\)

<table>
<thead>
<tr>
<th>Diameter (cm)</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.0071</td>
<td>0.0082</td>
<td>0.0094</td>
<td>0.0106</td>
<td>0.0118</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.0102</td>
<td>0.0119</td>
<td>0.0136</td>
<td>0.0153</td>
<td>0.0170</td>
<td>0.0187</td>
</tr>
<tr>
<td>7</td>
<td>0.0138</td>
<td>0.0162</td>
<td>0.0185</td>
<td>0.0208</td>
<td>0.0231</td>
<td>0.0254</td>
</tr>
<tr>
<td>8</td>
<td>0.0181</td>
<td>0.0211</td>
<td>0.0241</td>
<td>0.0271</td>
<td>0.0301</td>
<td>0.0332</td>
</tr>
<tr>
<td>9</td>
<td>0.0229</td>
<td>0.0267</td>
<td>0.0305</td>
<td>0.0333</td>
<td>0.0372</td>
<td>0.0420</td>
</tr>
<tr>
<td>10</td>
<td>0.0283</td>
<td>0.0330</td>
<td>0.0377</td>
<td>0.0424</td>
<td>0.0471</td>
<td>0.0518</td>
</tr>
<tr>
<td>11</td>
<td>0.0342</td>
<td>0.0399</td>
<td>0.0456</td>
<td>0.0513</td>
<td>0.0570</td>
<td>0.0627</td>
</tr>
<tr>
<td>12</td>
<td>0.0407</td>
<td>0.0475</td>
<td>0.0543</td>
<td>0.0610</td>
<td>0.0678</td>
<td>0.0746</td>
</tr>
<tr>
<td>13</td>
<td>0.0478</td>
<td>0.0557</td>
<td>0.0637</td>
<td>0.0716</td>
<td>0.0796</td>
<td>0.0876</td>
</tr>
<tr>
<td>14</td>
<td>0.0554</td>
<td>0.0646</td>
<td>0.0739</td>
<td>0.0831</td>
<td>0.0923</td>
<td>0.1015</td>
</tr>
<tr>
<td>15</td>
<td>0.0636</td>
<td>0.0742</td>
<td>0.0848</td>
<td>0.0954</td>
<td>0.1060</td>
<td>0.1166</td>
</tr>
<tr>
<td>16</td>
<td>0.0844</td>
<td>0.0965</td>
<td>0.1085</td>
<td>0.1206</td>
<td>0.1326</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.0953</td>
<td>0.1089</td>
<td>0.1225</td>
<td>0.1361</td>
<td>0.1497</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.1068</td>
<td>0.1221</td>
<td>0.1373</td>
<td>0.1526</td>
<td>0.1679</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.1360</td>
<td>0.1539</td>
<td>0.1700</td>
<td>0.1870</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.1696</td>
<td>0.1884</td>
<td>0.2072</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.2285</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diameter (cm)</td>
<td>Tinggi (m)</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>0.0203</td>
<td>0.0220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>0.0277</td>
<td>0.0300</td>
<td>0.0323</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0.0362</td>
<td>0.0392</td>
<td>0.0422</td>
<td>0.0452</td>
<td>0.0482</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.0458</td>
<td>0.0496</td>
<td>0.0534</td>
<td>0.0572</td>
<td>0.0610</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>0.0565</td>
<td>0.0612</td>
<td>0.0659</td>
<td>0.0707</td>
<td>0.0754</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0.0019</td>
<td>0.0741</td>
<td>0.0798</td>
<td>0.0855</td>
<td>0.0912</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>0.0814</td>
<td>0.0882</td>
<td>0.0950</td>
<td>0.1017</td>
<td>0.1085</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>0.0955</td>
<td>0.1035</td>
<td>0.1114</td>
<td>0.1194</td>
<td>0.1274</td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>0.1108</td>
<td>0.1200</td>
<td>0.1292</td>
<td>0.1385</td>
<td>0.1477</td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>0.1272</td>
<td>0.1378</td>
<td>0.1484</td>
<td>0.1590</td>
<td>0.1696</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>0.1447</td>
<td>0.1567</td>
<td>0.1688</td>
<td>0.1809</td>
<td>0.1929</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>0.1633</td>
<td>0.1770</td>
<td>0.1906</td>
<td>0.2042</td>
<td>0.2178</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>0.1831</td>
<td>0.1984</td>
<td>0.2136</td>
<td>0.2289</td>
<td>0.2442</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>0.2040</td>
<td>0.2210</td>
<td>0.2380</td>
<td>0.2550</td>
<td>0.2720</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>0.2261</td>
<td>0.2449</td>
<td>0.2638</td>
<td>0.2826</td>
<td>0.3014</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>0.2493</td>
<td>0.2706</td>
<td>0.2908</td>
<td>0.3116</td>
<td>0.3323</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>0.2736</td>
<td>0.2964</td>
<td>0.3191</td>
<td>0.3419</td>
<td>0.3647</td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>0.2990</td>
<td>0.3239</td>
<td>0.3488</td>
<td>0.3737</td>
<td>0.3987</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>0.3527</td>
<td>0.3798</td>
<td>0.4069</td>
<td>0.4341</td>
<td>0.4612</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>0.4416</td>
<td>0.4710</td>
<td>0.5004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lanjutan Lampiran 12

<table>
<thead>
<tr>
<th>Diameter (cm)</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0,0543</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0,0687</td>
<td>0,0725</td>
<td>0,0763</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0,0848</td>
<td>0,0895</td>
<td>0,0942</td>
<td>0,0989</td>
<td>0,1036</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0,1026</td>
<td>0,1083</td>
<td>0,1140</td>
<td>0,1197</td>
<td>0,1254</td>
<td>0,1311</td>
</tr>
<tr>
<td>12</td>
<td>0,1221</td>
<td>0,1289</td>
<td>0,1356</td>
<td>0,1424</td>
<td>0,1492</td>
<td>0,1560</td>
</tr>
<tr>
<td>13</td>
<td>0,1433</td>
<td>0,1512</td>
<td>0,1592</td>
<td>0,1672</td>
<td>0,1751</td>
<td>0,1831</td>
</tr>
<tr>
<td>14</td>
<td>0,1662</td>
<td>0,1754</td>
<td>0,1846</td>
<td>0,1939</td>
<td>0,2031</td>
<td>0,2123</td>
</tr>
<tr>
<td>15</td>
<td>0,1908</td>
<td>0,2014</td>
<td>0,2120</td>
<td>0,2225</td>
<td>0,2331</td>
<td>0,2437</td>
</tr>
<tr>
<td>16</td>
<td>0,2170</td>
<td>0,2291</td>
<td>0,2412</td>
<td>0,2532</td>
<td>0,2653</td>
<td>0,2773</td>
</tr>
<tr>
<td>17</td>
<td>0,2450</td>
<td>0,2586</td>
<td>0,2722</td>
<td>0,2858</td>
<td>0,2995</td>
<td>0,3131</td>
</tr>
<tr>
<td>18</td>
<td>0,2747</td>
<td>0,2899</td>
<td>0,3052</td>
<td>0,3205</td>
<td>0,3357</td>
<td>0,3510</td>
</tr>
<tr>
<td>19</td>
<td>0,3061</td>
<td>0,3231</td>
<td>0,3401</td>
<td>0,3571</td>
<td>0,3741</td>
<td>0,3911</td>
</tr>
<tr>
<td>20</td>
<td>0,3391</td>
<td>0,3580</td>
<td>0,3768</td>
<td>0,3956</td>
<td>0,4145</td>
<td>0,4333</td>
</tr>
<tr>
<td>21</td>
<td>0,3739</td>
<td>0,3947</td>
<td>0,4154</td>
<td>0,4362</td>
<td>0,4570</td>
<td>0,4777</td>
</tr>
<tr>
<td>22</td>
<td>0,4103</td>
<td>0,4331</td>
<td>0,4559</td>
<td>0,4787</td>
<td>0,5015</td>
<td>0,5243</td>
</tr>
<tr>
<td>23</td>
<td>0,4485</td>
<td>0,4734</td>
<td>0,4983</td>
<td>0,5232</td>
<td>0,5481</td>
<td>0,5731</td>
</tr>
<tr>
<td>24</td>
<td>0,4883</td>
<td>0,5155</td>
<td>0,5426</td>
<td>0,5697</td>
<td>0,5969</td>
<td>0,6240</td>
</tr>
<tr>
<td>25</td>
<td>0,5299</td>
<td>0,5593</td>
<td>0,5888</td>
<td>0,6182</td>
<td>0,6476</td>
<td>0,6771</td>
</tr>
<tr>
<td>26</td>
<td>0,5731</td>
<td>0,6050</td>
<td>0,6368</td>
<td>0,6686</td>
<td>0,7005</td>
<td>0,7323</td>
</tr>
<tr>
<td>27</td>
<td>0,6180</td>
<td>0,6524</td>
<td>0,6867</td>
<td>0,7211</td>
<td>0,7554</td>
<td>0,7897</td>
</tr>
<tr>
<td>28</td>
<td>0,6647</td>
<td>0,7016</td>
<td>0,7385</td>
<td>0,7755</td>
<td>0,8124</td>
<td>0,8493</td>
</tr>
<tr>
<td>29</td>
<td></td>
<td>0,7526</td>
<td>0,7922</td>
<td>0,8318</td>
<td>0,8714</td>
<td>0,9111</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td>0,8054</td>
<td>0,8478</td>
<td>0,8902</td>
<td>0,9326</td>
<td>0,9750</td>
</tr>
<tr>
<td>31</td>
<td></td>
<td></td>
<td>0,9053</td>
<td>0,9505</td>
<td>0,9958</td>
<td>1,0411</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td>0,9646</td>
<td>1,0128</td>
<td>1,0611</td>
<td>1,1093</td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
<td></td>
<td>1,0771</td>
<td>1,1284</td>
<td>1,1797</td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,1978</td>
<td>1,2523</td>
</tr>
<tr>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,2693</td>
<td>1,3270</td>
</tr>
</tbody>
</table>
Lanjutan Lampiran 12

<table>
<thead>
<tr>
<th>Diameter (cm)</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.1368</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.1628</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.1910</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>0.2216</td>
<td>0.2308</td>
<td>0.2400</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.2543</td>
<td>0.2649</td>
<td>0.2755</td>
<td>0.2861</td>
<td>0.2967</td>
</tr>
<tr>
<td>16</td>
<td>0.2894</td>
<td>0.3014</td>
<td>0.3135</td>
<td>0.3256</td>
<td>0.3376</td>
</tr>
<tr>
<td>17</td>
<td>0.3267</td>
<td>0.3403</td>
<td>0.3539</td>
<td>0.3675</td>
<td>0.3811</td>
</tr>
<tr>
<td>18</td>
<td>0.3662</td>
<td>0.3815</td>
<td>0.3968</td>
<td>0.4120</td>
<td>0.4273</td>
</tr>
<tr>
<td>19</td>
<td>0.4081</td>
<td>0.4251</td>
<td>0.4421</td>
<td>0.4591</td>
<td>0.4761</td>
</tr>
<tr>
<td>20</td>
<td>0.4522</td>
<td>0.4710</td>
<td>0.4898</td>
<td>0.5087</td>
<td>0.5275</td>
</tr>
<tr>
<td>21</td>
<td>0.4985</td>
<td>0.5193</td>
<td>0.5400</td>
<td>0.5608</td>
<td>0.5816</td>
</tr>
<tr>
<td>22</td>
<td>0.5471</td>
<td>0.5699</td>
<td>0.5927</td>
<td>0.6155</td>
<td>0.6383</td>
</tr>
<tr>
<td>23</td>
<td>0.5980</td>
<td>0.6229</td>
<td>0.6478</td>
<td>0.6727</td>
<td>0.6976</td>
</tr>
<tr>
<td>24</td>
<td>0.6511</td>
<td>0.6782</td>
<td>0.7054</td>
<td>0.7325</td>
<td>0.7596</td>
</tr>
<tr>
<td>25</td>
<td>0.7065</td>
<td>0.7359</td>
<td>0.7654</td>
<td>0.7948</td>
<td>0.8243</td>
</tr>
<tr>
<td>26</td>
<td>0.7642</td>
<td>0.7960</td>
<td>0.8278</td>
<td>0.8597</td>
<td>0.8915</td>
</tr>
<tr>
<td>27</td>
<td>0.8241</td>
<td>0.8584</td>
<td>0.8927</td>
<td>0.9271</td>
<td>0.9614</td>
</tr>
<tr>
<td>28</td>
<td>0.8862</td>
<td>0.9232</td>
<td>0.9601</td>
<td>0.9970</td>
<td>1.0339</td>
</tr>
<tr>
<td>29</td>
<td>0.9507</td>
<td>0.9903</td>
<td>1.0299</td>
<td>1.0695</td>
<td>1.1091</td>
</tr>
<tr>
<td>30</td>
<td>1.0174</td>
<td>1.0598</td>
<td>1.1021</td>
<td>1.1445</td>
<td>1.1869</td>
</tr>
<tr>
<td>31</td>
<td>1.0863</td>
<td>1.1316</td>
<td>1.1768</td>
<td>1.2221</td>
<td>1.2674</td>
</tr>
<tr>
<td>32</td>
<td>1.1575</td>
<td>1.2058</td>
<td>1.2540</td>
<td>1.3022</td>
<td>1.3505</td>
</tr>
<tr>
<td>33</td>
<td>1.2310</td>
<td>1.2823</td>
<td>1.3336</td>
<td>1.3849</td>
<td>1.4362</td>
</tr>
<tr>
<td>34</td>
<td>1.3067</td>
<td>1.3612</td>
<td>1.4156</td>
<td>1.4701</td>
<td>1.5245</td>
</tr>
<tr>
<td>35</td>
<td>1.3847</td>
<td>1.4424</td>
<td>1.5001</td>
<td>1.5578</td>
<td>1.6155</td>
</tr>
</tbody>
</table>
Lampiran 13. Hasil Olah Data Tanaman Umur 3, 5, 6, 7 dan 8 Tahun Dengan Menggunakan Program SPSS

A. Hasil olah data tanaman umur 3 tahun

<table>
<thead>
<tr>
<th>Correlations</th>
<th>LogVolume</th>
<th>LogDbh</th>
<th>LogTinggi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearsons' R</td>
<td>.000</td>
<td>.790</td>
<td>.790</td>
</tr>
<tr>
<td>LogDbh</td>
<td>.986</td>
<td>.000</td>
<td>.076</td>
</tr>
<tr>
<td>LogTinggi</td>
<td>.750</td>
<td>.078</td>
<td>.100</td>
</tr>
<tr>
<td>Sig (1-tailed)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LogVolume</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>LogDbh</td>
<td>.000</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>LogTinggi</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

Analisis:
- Besar hubungan antar variabel Volume dengan Dbh yang dihitung dengan koefisien korelasi adalah 0,986, sedangkan variabel Volume dengan tinggi adalah 0,790. Secara teoritis, karena korelasi antara Volume dan Dbh lebih besar, maka variabel Dbh lebih berpengaruh terhadap Volume dibanding variabel tinggi.
- Terjadi korelasi yang cukup kuat antara variabel Dbh dan Tinggi yaitu 0,678. Hal ini menandakan adanya korelasi di antara variabel bebas

<table>
<thead>
<tr>
<th>Model Summary</th>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std. Error of the Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>.986a</td>
<td>.973</td>
<td>.972</td>
<td>.0682159</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1,000b</td>
<td>1,000</td>
<td>1,000</td>
<td>.0000000</td>
</tr>
</tbody>
</table>

Analisis :
- Pada model 1, angka R square adalah 0,973. Hal ini berarti 97,3 % Volume pohon dapat dijelaskan oleh variabel Dbh. Sedangkan sisanya (100% - 97,3% = 2,7%) dijelaskan oleh sebab-sebab lain.
- Pada model 2, angka R square adalah 1. Ini berarti bahwa 100 % Volume pohon dapat dijelaskan oleh variabel Dbh dan tinggi.
Lanjutan Lampiran 13.

<table>
<thead>
<tr>
<th>Mode</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>9,646</td>
<td>1</td>
<td>9,646</td>
<td>2072,890</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>270</td>
<td>58</td>
<td>.005</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>9,916</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Regression</td>
<td>9,916</td>
<td>2</td>
<td>4,958</td>
<td>8E+016</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>0,000</td>
<td>57</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>9,916</td>
<td>59</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), LogDbh
b. Predictors: (Constant), LogDbh, LogTinggi
c. Dependent Variable: LogVolume

Analisis:
- Dari uji ANOVA atau F test, didapat F hitung untuk Model 1 atau model yang dipakai adalah 2072,890 dengan tingkat signifikansi 0,000. Karena probabilitas (0,000) jauh lebih kecil dari 0,05, maka model regresi bisa dipakai untuk memprediksi Volume. Atau bisa dikatakan, Dbh dan tinggi berpengaruh terhadap Volume.

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>t</th>
<th>Sig</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td></td>
<td>Tolerance</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>-3,964</td>
<td>.053</td>
<td>-64,199</td>
<td>000</td>
</tr>
<tr>
<td></td>
<td>LogDbh</td>
<td>2,305</td>
<td>.052</td>
<td>.986</td>
<td>45,520</td>
</tr>
<tr>
<td>2</td>
<td>(Constant)</td>
<td>-4,327</td>
<td>.000</td>
<td>-4E+008</td>
<td>000</td>
</tr>
<tr>
<td></td>
<td>LogDbh</td>
<td>2,000</td>
<td>.000</td>
<td>.834</td>
<td>2E+007</td>
</tr>
<tr>
<td></td>
<td>LogTinggi</td>
<td>1,000</td>
<td>.000</td>
<td>.224</td>
<td>6E+007</td>
</tr>
</tbody>
</table>

a. Dependent Variable: LogVolume

Analisis:
- Pada model 1, diperoleh persamaan regresi:
 \[Y = -4,327 + 2 X_1 + X_2 \]
 Dimana:
 \[Y = \text{Volume} \]
 \[X_1 = \text{Dbh} \]
 \[X_2 = \text{Tinggi} \]
 > Kostanta sebesar -4,327 menunjukkan bahwa jika tidak ada Dbh dan Tinggi, maka Volume tidak ada.
 > Koefisien regresi \(X_1 \) sebesar 2 menyatakan bahwa setiap penambahan (karena tanda +) 1 cm, besar Dbh akan meningkatkan Volume sebesar 2 cm³
 > Koefisien regresi \(X_2 \) sebesar 1 menyatakan bahwa setiap penambahan (karena tanda +) 1 m, besar Tinggi akan meningkatkan Volume sebesar 1 m³
Lanjutan Lampiran 13.

B. Hasil olah data tanaman umur 5 tahun

<table>
<thead>
<tr>
<th>Correlations</th>
<th>LogVolume</th>
<th>LogDhn</th>
<th>LogTinggi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td>LogVolume</td>
<td>1.000</td>
<td>.942</td>
</tr>
<tr>
<td></td>
<td>LogDhn</td>
<td>.942</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>LogTinggi</td>
<td>.813</td>
<td>.569</td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
<td>LogVolume</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>LogDhn</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>LogTinggi</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>LogVolume</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>LogDhn</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>LogTinggi</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

Analisis:
- Besar hubungan antar variabel Volume dengan Dbh yang dihitung dengan koefisien korelasi adalah 0,942, sedangkan variabel Volume dengan tinggi adalah 0,813. Secara teoritis, karena korelasi antara Volume dan Dbh lebih besar, maka variabel Dbh lebih berpengaruh terhadap Volume dibanding variabel tinggi.
- Terjadi korelasi yang cukup kuat antara variabel Dbh dan Tinggi yaitu 0,569. Hal ini menandakan adanya korelasi di antara variabel bebas.

<table>
<thead>
<tr>
<th>Model Summary</th>
<th></th>
<th></th>
<th></th>
<th>Change Statistics</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>R Square</td>
<td>Adjusted R Square</td>
<td>Std. Error of the Estimate</td>
<td>R Square Change</td>
<td>F Change</td>
<td>df1</td>
<td>df2</td>
</tr>
<tr>
<td>1</td>
<td>.942a</td>
<td>.887</td>
<td>.885</td>
<td>1208247</td>
<td>.887</td>
<td>453.297</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1.000b</td>
<td>1.000</td>
<td>1.002</td>
<td>0000000</td>
<td>.113</td>
<td>1</td>
<td>57</td>
</tr>
</tbody>
</table>

a Predictors: (Constant), LogDhn
b Predictors: (Constant), LogDhn, LogTinggi

Analisis :
- Pada model 1, angka R square adalah 0,887. Hal ini berarti 88,7 % Volume pohon dapat dijelaskan oleh variabel Dbh. Sedangkan sisanya (100% - 88,7% = 11,3%) dijelaskan oleh sebab-sebab lain.
- Pada model 2, angka R square adalah 1. Ini berarti bahwa 100 % Volume pohon dapat dijelaskan oleh variabel Dbh dan tinggi.
Lanjutan Lampiran 13.

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sip.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>6,618</td>
<td>1</td>
<td>6,618</td>
<td>453,297</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>.847</td>
<td>58</td>
<td>.015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7,464</td>
<td>59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Regression</td>
<td>7,464</td>
<td>2</td>
<td>3,732</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>.000</td>
<td>57</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>7,464</td>
<td>59</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), LogDhnn
b. Predictors: (Constant), LogDhnn, LogTinggi
c. Dependent Variable: LogVolume

Analisis:
- Dari uji ANOVA atau F test, didapat F hitung untuk Model 1 atau model yang dipakai adalah 453,297 dengan tingkat signifikansi 0,000. Karena probabilitas (0,000) jauh lebih kecil dari 0,05, maka model regresi bisa dipakai untuk memprediksi Volume. Atau bisa dikatakan, Dbh dan tinggi berpengaruh terhadap Volume.

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized Coefficients</th>
<th>Standardized Coefficients</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>-3.902</td>
<td>.155</td>
</tr>
<tr>
<td></td>
<td>LogDhnn</td>
<td>2.858</td>
<td>.125</td>
</tr>
<tr>
<td>2</td>
<td>(Constant)</td>
<td>-4.327</td>
<td>.600</td>
</tr>
<tr>
<td></td>
<td>LogDhnn</td>
<td>2.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>LogTinggi</td>
<td>1.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

a. Dependent Variable: LogVolume

Analisis:
- Pada model 1, diperoleh persamaan regresi:

\[Y = -4.327 + 2X_1 + X_2 \]

Dimana:
- \(Y \) = Volume
- \(X_1 \) = Dbh
- \(X_2 \) = Tinggi
- Konstanta sebesar -4.327 menyatakan bahwa jika tidak ada Dbh dan Tinggi, maka Volume tidak ada.
- Koefisien regresi \(X_1 \) sebesar 2 menyatakan bahwa setiap penambahan (karena tanda +) 1 cm, besar Dbh akan meningkatkan Volume sebesar 2 cm\(^3\)
- Koefisien regresi \(X_2 \) sebesar 1 menyatakan bahwa setiap penambahan (karena tanda +) 1 m, besar Tinggi akan meningkatkan Volume sebesar 1 m\(^3\)
Lanjutan Lampiran 13.

C. Hasil olah data tanaman umur 6 tahun

<table>
<thead>
<tr>
<th>Correlations</th>
<th>LogVolume</th>
<th>LogDbh</th>
<th>LogTinggi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td>LogVolume</td>
<td>1.000</td>
<td>.953</td>
</tr>
<tr>
<td></td>
<td>LogDbh</td>
<td>.953</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>LogTinggi</td>
<td>.846</td>
<td>.845</td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
<td>LogVolume</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>LogDbh</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>LogTinggi</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>LogVolume</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>LogDbh</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>LogTinggi</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

Analisis:
- Besar hubungan antar variabel Volume dengan Dbh yang dihitung dengan koefisien korelasi adalah 0,953, sedangkan variabel Volume dengan tinggi adalah 0,846. Secara teoritis, karena korelasi antara Volume dan Dbh lebih besar, maka variabel Dbh lebih berpengaruh terhadap Volume dibanding variabel tinggi.
- Terjadi korelasi yang cukup kuat antara variabel Dbh dan Tinggi yaitu 0,645. Hal ini menandakan adanya korelasi di antara variabel bebas.

<table>
<thead>
<tr>
<th>Model Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

* Predictors: (Constant), LogDbh

Analisis:
- Pada model 1, angka R square adalah 0.908. Hal ini berarti 90.8% Volume pohon dapat dijelaskan oleh variabel Dbh. Sedangkan sisanya (100% - 90.8% = 9.2%) dijelaskan oleh sebab-sebab lain.
- Pada model 2, angka R square adalah 1. Hal ini berarti bahwa 100% Volume pohon dapat dijelaskan oleh variabel Dbh dan tinggi.
Lanjutan Lampiran 13.

ANOMA

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>9,475</td>
<td>1</td>
<td>9,475</td>
<td>573,464</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>.958</td>
<td>56</td>
<td>.017</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>10,434</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Regression</td>
<td>10,434</td>
<td>2</td>
<td>5,217</td>
<td>5E+016</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>0,000</td>
<td>57</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>10,434</td>
<td>59</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), LogDbh
b. Predictors: (Constant), LogDbh, LogTinggi
c. Dependent Variable: LogVolume

Analisis:
- Dari uji ANOVA atau F test, didapat F hitung untuk Model 1 atau model yang dipakai adalah 573,464 dengan tingkat signifikansi 0,000. Karena probabilitas (0,000) jauh lebih kecil dari 0,05, maka model regresi bisa dipakai untuk memprediksi Volume. Atau bisa dikatakan, Dbh dan tinggi berpengaruh terhadap Volume.

Coefficients

<table>
<thead>
<tr>
<th>Model</th>
<th>Unstandardized</th>
<th>Standardized</th>
<th>Coefficient Statistics</th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coefficients</td>
<td>Beta</td>
<td>t</td>
<td>Sig</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>-4,022</td>
<td>-29,540</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>LogDbh</td>
<td>,136</td>
<td>.953</td>
<td>23,947</td>
</tr>
<tr>
<td></td>
<td>(Constant)</td>
<td>-4,327</td>
<td>-4E+008</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>LogDbh</td>
<td>,114</td>
<td>.697</td>
<td>2E+008</td>
</tr>
<tr>
<td></td>
<td>LogTinggi</td>
<td>,1000</td>
<td>9E+007</td>
<td>.000</td>
</tr>
</tbody>
</table>

- Dependent Variable: LogVolume

Analisis:
- Pada model 1, diperoleh persamaan regresi:
 \[Y = -4,327 + 2 X_1 + X_2 \]
- Dimana:
 - Y = Volume
 - X_1 = Dbh
 - X_2 = Tinggi
- Kostanta sebesar -4,327 menyatakan bahwa jika tidak ada Dbh dan Tinggi, maka Volume tidak ada.
- Koeisien regresi X_1 sebesar 2 menyatakan bahwa setiap penambahan (karena tanda +) 1 cm, besar Dbh akan meningkatkan Volume sebesar 2 cm³.
- Koeisien regresi X_2 sebesar 1 menyatakan bahwa setiap penambahan (karena tanda +) 1 cm, besar Tinggi akan meningkatkan Volume sebesar 1 m³.
Lanjutan Lampiran 13.

D. Hasil olah data tanaman umur 7 tahun

<table>
<thead>
<tr>
<th>Correlations</th>
<th>LogVolume</th>
<th>LogDbh</th>
<th>LogTinggi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td>LogVolume</td>
<td>1.000</td>
<td>.954</td>
</tr>
<tr>
<td></td>
<td>LogDbh</td>
<td>.954</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>LogTinggi</td>
<td>.835</td>
<td>.031</td>
</tr>
<tr>
<td>Sig. (1-tailed)</td>
<td>LogVolume</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LogDbh</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LogTinggi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>LogVolume</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>LogDbh</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>LogTinggi</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

Analisis:
- Besar hubungan antar variabel Volume dengan Dbh yang dihitung dengan koefisien korelasi adalah 0.954, sedangkan variabel Volume dengan tinggi adalah 0.835. Secara teoritis, karena korelasi antara Volume dan Dbh lebih besar, maka variabel Dbh lebih berpengaruh terhadap Volume dibanding variabel tinggi.
- Terjadi korelasi yang cukup kuat antara variabel Dbh dan Tinggi yaitu 0.631. Hal ini menandakan adanya korelasi di antara variabel bebas.

<table>
<thead>
<tr>
<th>Model Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
</tbody>
</table>

* Predictors: (Constant), LogDbh

Analisis:
- Pada model 1, angka R square adalah 0.909. Hal ini berarti 90.9 % Volume pohon dapat dijelaskan oleh variabel Dbh. Sedangkan sisanya (100% - 90.9% = 9.1%) dijelaskan oleh sebab-sebab lain.
- Pada model 2, angka R square adalah 1. Hal ini berarti bahwa 100 % Volume pohon dapat dijelaskan oleh variabel Dbh dan tinggi.
Lanjutan Lampiran 13.

ANOVA

<table>
<thead>
<tr>
<th></th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression</td>
<td>8,855</td>
<td>1</td>
<td>8,855</td>
<td>590,801</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>.884</td>
<td>58</td>
<td>.015</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>9,740</td>
<td>58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Regression</td>
<td>9,740</td>
<td>2</td>
<td>4,870</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>Residual</td>
<td>.000</td>
<td>57</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>9,740</td>
<td>59</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Predictors: (Constant), LogDbh
b. Predictors: (Constant), LogDbh, LogTinggi
c. Dependent Variable: LogVolume

Analisis:
- Dari uji ANOVA atau F test, didapat F hitung untuk Model 1 atau model yang dipakai adalah 590,801 dengan tingkat signifikansi 0,000. Karena probabilitas (0,000) jauh lebih kecil dari 0,05, maka model regresi bisa dipakai untuk memprediksi Volume. Atau bisa dikatakan, Dbh dan tinggi berpengaruh terhadap Volume.

| Coefficients
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unstandardized Coefficients</td>
<td>Standardized Coefficients</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>Std. Error</td>
<td>Beta</td>
<td>t</td>
</tr>
<tr>
<td>1</td>
<td>(Constant)</td>
<td>-4.000</td>
<td>.141</td>
<td>.954</td>
</tr>
<tr>
<td></td>
<td>LogDbh</td>
<td>2.091</td>
<td>.112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LogTinggi</td>
<td>1.000</td>
<td>.000</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Collinearity Statistics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tolerance</td>
</tr>
<tr>
<td>1</td>
<td>1.000</td>
</tr>
<tr>
<td>2</td>
<td>.602</td>
</tr>
</tbody>
</table>

* Dependent Variable: LogVolume

Analisis:
- Pada model 1, diperoleh persamaan regresi:
 \[Y = -4,327 + 2 \times X_1 + X_2 \]
 Dimana:
 \[Y = \text{Volume} \]
 \[X_1 = \text{Dbh} \]
 \[X_2 = \text{Tinggi} \]
- Kostanta sebesar -4,327 menyatakan bahwa jika tidak ada Dbh dan Tinggi, maka Volume tidak ada.
- Koefisien regresi \(X_1 \) sebesar 2 menyatakan bahwa setiap penambahan (karena tanda +) 1 cm, besar Dbh akan meningkatkan Volume sebesar 2 cm\(^2\).
- Koefisien regresi \(X_2 \) sebesar 1 menyatakan bahwa setiap penambahan (karena tanda +) 1 m, besar Tinggi akan meningkatkan Volume sebesar 1 m\(^3\).
Lanjutan Lampiran 13.

E. Hasil olah data tanaman umur 8 tahun

<table>
<thead>
<tr>
<th></th>
<th>LogVolume</th>
<th>LogDbh</th>
<th>LogTinggi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearson Correlation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LogVolume</td>
<td>1,000</td>
<td>.970</td>
<td>.867</td>
</tr>
<tr>
<td>LogDbh</td>
<td>.970</td>
<td>1,000</td>
<td>.720</td>
</tr>
<tr>
<td>LogTinggi</td>
<td>.867</td>
<td>.720</td>
<td>1,000</td>
</tr>
<tr>
<td>Sig (1-tailed)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LogVolume</td>
<td></td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>LogDbh</td>
<td>.000</td>
<td></td>
<td>.000</td>
</tr>
<tr>
<td>LogTinggi</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

Analisis:
- Besar hubungan antar variabel Volume dengan Dbh yang dihitung dengan koefisien korelasi adalah 0,970, sedangkan variabel Volume dengan tinggi adalah 0,867. Secara teoritis, karena korelasi antara Volume dan Dbh lebih besar, maka variabel Dbh lebih berpengaruh terhadap Volume dibanding variabel tinggi.
- Terjadi korelasi yang cukup kuat antara variabel Dbh dan Tinggi yaitu 0,720. Hal ini menandakan adanya korelasi di antara variabel bebas.

Model Summary

<table>
<thead>
<tr>
<th>Model</th>
<th>R</th>
<th>R Square</th>
<th>Adjusted R Square</th>
<th>Std Error of the Estimate</th>
<th>R Square Change</th>
<th>F Change</th>
<th>df1</th>
<th>df2</th>
<th>Sig. F Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.970*</td>
<td>.941</td>
<td>.940</td>
<td>.000000383</td>
<td>.941</td>
<td>922,451</td>
<td>1</td>
<td>58</td>
<td>.000</td>
</tr>
<tr>
<td>2</td>
<td>1.000†</td>
<td>1.000</td>
<td>1.000</td>
<td>.000000000</td>
<td>.059</td>
<td>1</td>
<td>1</td>
<td>57</td>
<td>.000</td>
</tr>
</tbody>
</table>

a) Predictors: (Constant), LogDbh
b) Predictors: (Constant), LogDbh, LogTinggi

Analisis:
- Pada model 1, angka R square adalah 0,941. Hal ini berarti 94,1 % Volume pohon dapat dijelaskan oleh variabel Dbh. Sedangkan sisanya (100% - 94,1% = 5,9%) dijelaskan oleh sebab-sebab lain.
- Pada model 2, angka R square adalah 1. Ini berarti bahwa 100 % Volume pohon dapat dijelaskan oleh variabel Dbh dan tinggi.
Lanjutan Lampiran 13.

<table>
<thead>
<tr>
<th>Model</th>
<th>Sum of Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>Sig</th>
</tr>
</thead>
</table>
| 1 | Regression | 8.974 | 1 | *8.974* | 922.451 | .000*
| | Residual | .564 | 58 | .010 | |
| | Total | 9.538 | 58 | |
| 2 | Regression | 9.538 | 2 | 4.760 | 8.4 |
| | Residual | .000 | 57 | .000 | |
| | Total | 9.538 | 59 | |

*a Predictors: (Constant), LogDbh
*b Predictors: (Constant), LogDbh, LogTinggi
*c Dependent Variable: LogVolume

Analisis:
- Dari uji ANOVA atau F test, didapat F hitung untuk Model 1 atau model yang dipakai adalah 922,451 dengan tingkat signifikansi 0,000. Karena probabilitas (0,000) jauh lebih kecil dari 0,05, maka model regresi bisa dipakai untuk memprediksi Volume. Atau bisa dikatakan, Dbh dan tinggi berpengaruh terhadap Volume.

<table>
<thead>
<tr>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1 (Constant)</td>
</tr>
<tr>
<td>LogDbh</td>
</tr>
<tr>
<td>2 (Constant)</td>
</tr>
<tr>
<td>LogDbh</td>
</tr>
<tr>
<td>LogTinggi</td>
</tr>
</tbody>
</table>

*a Dependent Variable: LogVolume

Analisis:
- Pada model 1, diperoleh persamaan regresi:

\[Y = -4.327 + 2 X_1 + X_2 \]

Dimana:
- \(Y \) = Volume
- \(X_1 \) = Dbh
- \(X_2 \) = Tinggi
- Kostanta sebesar -4,327 menyatakan bahwa jika tidak ada Dbh dan Tinggi, maka Volume tidak ada.
- Koefisien regresi \(X_1 \) sebesar 2 menyatakan bahwa setiap penambahan (karena tanda +) 1 cm, besar Dbh akan meningkatkan Volume sebesar 2 \(\text{cm}^3 \)
- Koefisien regresi \(X_2 \) sebesar 1 menyatakan bahwa setiap penambahan (karena tanda +) 1 m, besar Tinggi akan meningkatkan Volume sebesar 1 \(\text{m}^3 \)
LAMPIRAN 14. Kondisi umum lokasi penelitian di HPHTI PT Sumatera Silva Lestari
Lampiran 15. Surat Keterangan Dari HPHTI PT Sumatera Sylva Lestari

PT. SUMATERA SYLVA LESTARI
Hutan Tanaman Industri – Pasir Pengarayan
Kec. Rambah Hilir - Kab. Rokan Hulu - Riau
Po. Box 18 - 28457

SURAT KETERANGAN
No: 120/Mgr/SSL-PP/V1/2005

Yang bertanda tangan dibawah ini Pimpinan PT. Sumatera Sylva Lestari HPHT Sector Pasirpengarayan menerangkan bahwa :

Nama : Sri Marta Riyawati
Nim : 001201034
Jurusan : Manajemen Hutan

Benar telah melaksanakan penelitian di PT. Sumatera Sylva Lestari Unit I sebagai syarat untuk memperoleh gelar Sarjana Kehutanan.

Demikian Surat Keterangan ini kami buat dengan sebenarnya untuk dapat dipergunakan seperforma.

[Signature]
Ir. Martono Bakri
Manager