II TINJAUAN PUSTAKA

2.1. kolang kaling

Kolang kaling adalah biji dari tanaman palmae penghasil gula yang belum matang. Setelah biji dikeluarkan, endosperm yang lunak dimasak dalam sirup. Kolang kaling berwarna putih dan mempunyai tekstur seperti agar-agar atau kenyal (Jhonson, 1980).

Kolang kaling dapat disebut juga sebagai endosperm biji buah aren yang berumur setengah masak melalui proses pengolahan. Setelah diolah menjadi kolang kaling, maka akan berubah warna menjadi putih agak kekuningan dan menjadi lunak dan kenyal (Sunanto, 1993).

Kolang kaling selain bisa dimanfaatkan sebagai bahan pencampur aneka bahan makanan dan minuman, kandungan seratnya juga baik untuk kesehatan. Serat kolang kaling dan serat dari bahan makanan lain yang masuk ke dalam tubuh menyebabkan proses pembuangan air besar teratur, sehingga bisa mencegah kegemukan dan obesitas, penyakit jantung koroner, kanker usus, dan penyakit kencing manis (Muchtadi, 1974).

Kolang kaling merupakan salah satu bahan makanan non kalori, sehingga banyak dimakan sebagai bahan makanan selingan dan tidak dapat menambah kegemukan seseorang. Komposisi kimia dari kolang kaling dapat dilihat pada Tabel 1.

Tabel 1: Komposisi Kimia Kolang kaling

<table>
<thead>
<tr>
<th>Komponen</th>
<th>Kadar (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kadar air</td>
<td>93,75</td>
</tr>
<tr>
<td>Protein</td>
<td>0,69</td>
</tr>
<tr>
<td>Lemak</td>
<td>-</td>
</tr>
<tr>
<td>Pati</td>
<td>3,39</td>
</tr>
<tr>
<td>Abu</td>
<td>-</td>
</tr>
<tr>
<td>Serat kasar</td>
<td>0,95</td>
</tr>
</tbody>
</table>

2.2. Pengolahan Kolang kaling

Buah aren yang diolah menjadi kolang kaling adalah buah yang setengah matang yang diperkirakan berumur 1-1,5 tahun atau kadang – kadang lebih. Secara tradisional kematangan buah aren ditentukan dengan cara membakar atau merebus buah. Bagi orang yang telah berpengalaman, cukup dengan melihat biji dari buah yang dibelah (Muchtadi, 1974).

Cara pembakaran dilakukan dengan menghamparkan buah aren di atas kayu kering di atas tanah, kemudian ditutup kembali dengan kayu kering lainnya dan dibakar sampai hangus (Muchtadi, 1974).

Cara perebusan dilakukan dengan merebus buah aren yang telah dirontokkan dari tangkainya dan dimasak dalam drum atau kaleng minyak tanah.
Perebusan berlangsung selama kurang lebih 1 jam, ditandai dengan perubahan warna buah dari hijau tua menjadi hijau pucat kekuningan (Muchtadi, 1974)

Pengambilan biji dilakukan dengan cara membelah buah tersebut dan biji dikeluarkan dengan pisau. Setelah biji ditumbuk dengan batu sampai pipih, dicuci dan direndam dalam air bersih selama 3 hari 3 malam supaya mengembang. Sebelum dijual di pasar kolong kaling yang telah direndam dicuci kembali (Muchtadi, 1974).

2.3. Permen

Permen adalah produk yang dibuat dengan mendidihkan campuran gula dan air bersama dengan bahan pewarna dan pemberi rasa sampai tercapai kadar air kira - kira 3%. Biasanya suhu digunakan sebagai penunjang kandungan padatan. Sesudah didihkan sampai mencapai kandungan padatan yang diinginkan (kurang lebih 150 °C) sirup dituangkan pada cetakan dan dibiarkan tercetak. Seni membuat permen dengan daya tahan yang memuaskan terletak pada pembuatan produk dengan kadar air minimum dan dengan sedikit saja kecendrungan mengkristal. Kristal dalam produk - produk ini berakibat mengurangi penampilan yang jernih seperti kaca dan membentuk massa yang kabur. Kekurangan ini disebut grainning dan mengakibatkan penampilan yang kurang memuaskan dan terasa kasar pada lidah (Buckle, et al., 1987)

Permen yang berasal dari titik pendidihan yang tinggi, mempunyai bentuk yang kokoh/ padat, penampakan seperti kaca dan tidak mengkristal. Permen tersedia dengan berbagai rasa, warna dan bentuk. Kualitas dan waktu penyimpanan permen ini tergantung pada kandungan air serta keseimbangan antara gula sukrosa dan sirup glukosa (Cakebread, 1975).
Permen biasanya mengandung gula invert dan sirup glukosa. Permen mengandung kadar air yang paling rendah dari semua produk manisan, yaitu antara 0,5 – 2% (Cakebread, 1975).

2.3.1. Jenis-Jenis Permen

High boiled sweet (Hard Candy) adalah permen yang mempunyai tekstur yang keras, penampakan yang jernih dan biasanya terdiri dari komponen – komponen dasar sukrosa dan sirup glukosa serta bahan – bahan lain yang

Tabel 2. Jenis-Jenis Permen

<table>
<thead>
<tr>
<th>Tekstur</th>
<th>Contoh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permen yang mengkristal</td>
<td></td>
</tr>
<tr>
<td>Kristal besar</td>
<td>Rock candy</td>
</tr>
<tr>
<td>Kristal kecil</td>
<td>Pondant, Fudge</td>
</tr>
<tr>
<td>Permen yang tidak mengkristal</td>
<td></td>
</tr>
<tr>
<td>Hard candy</td>
<td>Sour balls, Butterscoth</td>
</tr>
<tr>
<td>Brittles</td>
<td>Peanut brittle</td>
</tr>
<tr>
<td>Chewy candy</td>
<td>Caramel, Taffy</td>
</tr>
<tr>
<td>Gummy candy</td>
<td>Marshmallow, Jellies, Gumdrops</td>
</tr>
</tbody>
</table>

Sumber: Potter (1986)

2.3.2. Permen Jelly

Permen jelly merupakan permen yang dibuat dari sari buah dan bahan pembentuk gel, yang berpenampilan jernih dan transparan, serta memiliki tekstur dengan kekenyalan tertentu. Pelapisan jelly dengan tepung berfungsi untuk memudahkan dalam pengemasan yaitu agar terpisah satu sama lain. Permen jelly
termasuk dalam bahan pangan semi basah yang memiliki kadar air 10-14% (Minarni, 1995).

Kealotan dan tekstur permen jelly banyak tergantung pada bahan gel yang digunakan. Jelly yang berasal dari gelatin mempunyai konsistensi yang lunak dan bersifat seperti karet sedang jelly yang terbuat dari agar bersifat lunak dengan tekstur rapuh. Pektin menghasilkan agar-agar yang juga rapuh dan lunak tetapi membentuk gel yang baik pada pH rendah. Karagenan menghasilkan gel yang kuat. Pembuatan permen karet dan jelly meliputi pembuatan campuran gula yang dimasak dengan kandungan padatan yang diperlukan dan penambahan pembentuk gel dengan cita rasa, warna dan akhirnya pencetakan produk (Buckle et al., 1987).

Bahan pengawet yang biasa digunakan adalah sodium propionat yang efektif dalam menghambat pertumbuhan kapang dan beberapa jenis bakteri. Sodium propionat efektif pada pH 5-6, dan daya pengawetannya semakin berkurang dengan tingginya pH, penambahan sodium propionat yang diperbolehkan dalam makanan maksimum 0,3% (Anonimus, 1990)

Permen jelly memerlukan pelapis berupa campuran tepung tapioka dengan tepung gula. Guna bahan pelapis ini adalah untuk membuat permen tidak melekat satu sama lain dan juga menambah rasa sehingga bertambah manis. Umumnya
permen dari gelatin dilapisi dengan tepung pati kering untuk membentuk lapisan luar yang tahan kering untuk membentuk lapisan luar yang tahan yang lama, dan menghasilkan bentuk gel yang baik. Perbandingan komposisi bahan pelapis permen jelly terbaik adalah tepung tapioka : tepung gula (1 : 1) (Anonimus, 1990).

2.3.3. Kandungan Kimia Permen

2.3.4. Pembuatan Permen

Permen secara biasa dibuat dengan mendidihkan larutan gula dengan unsur asam untuk menghasilkan suatu jumlah tertentu dari pembalikan. Pendidikan dilanjutkan hingga mencapai temperatur 300°F, dan selesai jika hampir semua air telah menguap, setelah dingin akan berbentuk seperti kaca yang padat yang umum
dikenal sebagai permen. Pada akhir pendinginan hanya sejumlah kecil air (beberapa persen) saja yang terkandung (Fox and Cameron, 1970).

Permen dihasilkan dengan cara merebus larutan gula, perasa dan pewarna sampai konsentrasi dibutuhkan tercapai, yaitu keadaan dimana campuran dalam cetakan tidak mengkristal. Kualitas permen sebagian besar ditentukan oleh selera pribadi, contohnya permen yang diproduksi untuk anak-anak biasanya warnanya mengkilap tidak seperti yang diinginkan orang dewasa (Sutherland, et al., 1986)

Pembuatan permen jelly secara umum dilakukan sebagai berikut: sari buah dan air yang telah ditentukan perbandingannya dimasak sampai mencapai suhu 80°C, kemudian ditambahkan sukrosa, HFS, sirup glukosa dan asam sitrat sambil diaduk dan pemasakan diteruskan hingga mencapai suhu 90-100°C. Penstabil dilarutkan dalam air panas (50-60°C) dan dimasukkan dalam adonan sambil diaduk hingga mencapai suhu 95°C, lalu adonan dituang dalam cetakan dan dibiarkan selama 1 jam dalam suhu ruang, setelah cukup dingin adonan dimasukkan ke dalam ruang pendingin suhu 5°C selama 24 jam. Setelah dikeluarkan dari ruang pendingin dibiarkan pada suhu ruang selama 1 jam, untuk menetralkan suhu. Selanjutnya permen dikeluarkan dari cetakan dan ditaburi dengan tepung gula dan tepung tapioka yang sudah disiangrai selama 20 menit (http://www.hayati-IPB, 2001).

2.4. Bahan Utama Pembuatan Permen

2.4.1. Gula Sukrosa

Gula adalah nama umum dari sukrosa (juga sakarosa), yang diekstraksi dan diperoleh dari gula tebu dan gula bit. Ada banyak substansi kimia yang diklasifikasikan sebagai gula dan ketika dihubungkan, gula selalu digunakan
sebagai pemberi sifat seperti dalam gula susu (laktosa), gula jagung dan gula malt (maltosa) (Nickerson and Ronsivalli, 1980).

Sifat yang penting dari gula adalah kemampuannya membentuk kristal. Kristalisasi merupakan hal yang penting dalam produksi gula secara komersil, yaitu dalam proses pemurnian gula. Larutan gula yang murni lebih mudah mengalami kristalisasi (Shallenberg and Birch, 1975).

Gula dikonsumsi dalam jumlah besar, baik dalam bentuk gula yang biasa digunakan dalam rumah tangga maupun sebagai makanan seperti biscuit, kembang gula, coklat, es krim, selai buah-buahan dan minuman ringan juga cake. Gula dan manisan awetan merupakan 21% dari seluruh kandungan karbohidrat rata-rata dalam susunan makanan orang Inggris (Gaman dan Sherrington, 1994).

Sukrosa atau gula tebu adalah jenis disakarida yang paling banyak terdapat dalam nabati terutama dalam batang tebu dan berbagai buah-buahan. Hidrolisa terhadap sukrosa menghasilkan 1 molekul α - D glukosa dan molekul α - D fruktosa. Hidrolisis akan lebih cepat terjadi jika ditambahkan sedikit asam, dipanaskan atau diberi enzim (Sulaiman, 1996).

Sukrosa didapatkan dalam sayuran dan buah-buahan, beberapa diantaranya seperti tebu dan bit gula mengandung sukrosa dalam jumlah yang relatif besar. Dari tebu dan bit gula diekstraksi secara komersil (Gaman dan Sherrington, 1994).
2.4.2. High Fructose Syrup

Bahan baku untuk pengolahan *High Fructose Syrup* (HFS) adalah sirup dekstrosa yang dihasilkan melalui cara pengenceran, dekstrinasi, dan sakarisisa pati memakai katalisator sistem enzim. Kandungan dekstrosa di dalam sirup yang akan diolah sebaiknya tidak kurang dari 93% berat kering (Tjokroadikoesoemo, 1986).

HFS merupakan larutan pekat (sirup) dengan derajat kemurnian yang amat tinggi, bebas dari ion logam maupun ion-ion beracun lainnya, misalnya timah hitam, besi, tembaga, sulfat, sianida dan sebagainya (Tjokroadikoesoemo, 1986).

Tabel 3. Komposisi Kimia HFS

<table>
<thead>
<tr>
<th>Komponen</th>
<th>Nilai</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kandungan bahan kering (%)</td>
<td>71</td>
</tr>
<tr>
<td>PH</td>
<td>4,5</td>
</tr>
<tr>
<td>Kandungan Karbohidrat (%)</td>
<td>99,95</td>
</tr>
<tr>
<td>Kadar abu</td>
<td>0,05</td>
</tr>
<tr>
<td>Kemanisan pada konsentrasi 15%</td>
<td>sama dengan sukrosa</td>
</tr>
<tr>
<td>Bahan kering</td>
<td></td>
</tr>
<tr>
<td>Dekstrosa (%)</td>
<td>17-53</td>
</tr>
<tr>
<td>Fruktosa (%)</td>
<td>40-42</td>
</tr>
<tr>
<td>Oligosakarida (%)</td>
<td>3-5</td>
</tr>
<tr>
<td>Ion-ion logam berat (Pb,Fe,Cu)</td>
<td>nol</td>
</tr>
</tbody>
</table>

Sumber : Tjokroadikoesoemo (1986).

Oleh karena sifat kimia dan fisika yang dimilikinya, HFS sangat tepat jika dipergunakan sebagai bahan pemanis dan *doctoring agent* pada industri-industri pengalengan buah-buahan, minuman ringan, marmalade, limun, kue-kue, permen, yoghurt dan lain-lain (Tjokroadikoesoemo, 1986).

HFS merupakan kelanjutan dari proses pengolahan sirup glukosa yaitu sebagian besar glukosa diisomerisasikan menjadi fruktosa. Dengan demikian gula dalam HFS terdiri dari glukosa dan fruktosa. Fruktosa memiliki tingkat kemanisan

Isomerisasi glukosa menjadi fruktosa dapat dilakukan dengan baik dengan menggunakan basa hanya dapat menghasilkan fruktosa sebesar 35-40%. Sedangkan isomerisasi dengan enzim glukoisomerase dapat menghasilkan 42% fruktosa (Judoamidjojo, dkk., 1992).

Kemanisan larutan D-Fructosa terhadap sukrosa akan menurun jika suhu dinaikkan, pada suhu 50 C D-Fructosa kira-kira 1,4 kali lebih manis dari sukrosa, tinggal 0,8. Demikian halnya pada D-Galaktosa, D-Glukosa dan L-sorbosa, kemanisan maltosa dipengaruhi oleh perubahan-perubahan suhu (Winarno, 1992).

2.4.3. Air

Kadar air sangat berpengaruh terhadap mutu bahan pangan, dan hal ini merupakan salah satu sebab mengapa didalam pengolahan pangan air tersebut sering dikeluarkan atau dikurangi dengan cara penguapan atau pengentalan dan pengeringan. Pengurangan air disamping bertujuan mengawetkan juga untuk mengurangi besar dan berat bahan pangan (Winarno, dkk., 1980).

Air dalam bahan pangan berperan sebagai pelarut dari berbagai komponen disamping ikut sebagai bahan pereaksi, sedang bentuk air dapat ditemukan sebagai air bebas dan air terikat (Purnomo, 1995).

Pengeringan pada dasarnya bertujuan mengeluarkan air dengan cara pemanasan sedemikian rupa sampai mencapai kadar air tertentu. Terbatasnya kadar air, akan menyebabkan enzim-enzim tidak aktif atau mikroorganisme tidak dapat tumbuh (Hudaya dan Daradjat, 1980).
2.5. Bahan-Bahan Yang Ditambahkan

2.5.1. Asam Sitrat

Asam sitrat biasanya ditambahkan dalam pembuatan sirup, jam dan jelly untuk memperoleh cita rasa, sebagai pengawet, untuk mengurangi rasa manis. Memperbaiki sifat koloidal dari bahan makanan yang mengandung pektin, memperbaiki tekstur dari jelly, membantu ekstraksi pektin dari buah-buahan dan sayuran dan menaikkan efektivitas benzoat sebagai bahan pengawet (Purba dan Rusmarilin, 1985).

Asam sitrat serta garamnya dipakai sebagai tambahan untuk mengasamkan, menetralkan dan mempertahankan derajat keasaman makanan. Asam sitrat berbentuk kristal putih yang rasanya kecut dan mudah sekali larut dalam air, lebih-lebih dalam air panas (Soetanto, 1996).

Asam di dalam makanan dapat dihasilkan dengan menambahkan kultur pembentuk asam atau menambahkan langsung asam kedalam makanan, misalnya asam sitrat atau asam malat. Jumlah asam yang cukup banyak akan menyebabkan denaturasi protein bakteri, sehingga asam dapat dijadikan sebagai bahan pengawet selain sebagai penambah cita rasa, aroma dan warna (Winarno, dkk., 1980).

Asam sitrat berfungsi sebagai pemberi rasa asam dan mencegah kristalisasi gula. Selain itu asam sitrat juga berfungsi sebagai katalisator hidrolisa sukrosa menjadi gula invert selama penyimpanan serta sebagai penjernih jelly yang

2.5.2. Essens

Produk konfeksioneri biasanya berbeda dari kebanyakan makanan yang komponen utamanya adalah gula. Bagian dari gula adalah pemanis, gula tidak mempunyai pengaruh terhadap flavour dan oleh sebab itu penampakan flavour dari produk akhir dari konfeksioneri, harus ditambahkan dengan sengaja buah-buahan berflavour (Minifie, 1989).
2.5.3. Penstabil

Bahan-bahan yang termasuk ke dalam bahan pengental diantaranya adalah gum, pati, dekstrin, turunan-turunan dari protein dan bahan-bahan lainnya yang dapat menstabilkan, memekatkan atau mengentalkan makanan yang dicampur dengan air untuk membentuk keketalan tertentu atau gel (Winarno, dkk., 1980).

Pengemulsi, pemantap dan pengental adalah bahan tambahan makanan yang dapat membantu terbentuknya atau memantapkan sistem disersi yang homogen pada makanan (Winarno dan Aman, 1994).

Disamping bahan pengental dan pengkenyal yang berasal dari pati, bahan mencampur dan penguat tekstur yang berasal dari putih telur dan gelatin, bahan flavour dan pewarna dari susu, serta bahan flavor, pengempuk dan bahan pelicin dari lemak, semua bahan tersebut dapat mengganggu kestabilan bentuk kristal dari sukrosa (Potter, 1986).

Serat makanan adalah komponen dinding sel tanaman terutama tersusun atas selulosa, pektin, dan hemiselulosa, serta bahan non karbohidrat seperti lignin. Serat makanan juga ada yang berasal dari food additives berupa gum arabic, guar gum, alginate, caragenan, dan carboxymetil selulosa (http://www.hayati-IPB.com/2001).

Serat makanan adalah komponen dinding sel tanaman terutama tersusun atas selulosa, pektin, dan hemiselulosa, serat bahan non karbohidrat seperti lignin, Serat makanan ada juga yang berasal dari food additives berupa gum arabic, guar gum, alginate, caragenan (http://www.hayati-IPB.com/2001).

Karagenan adalah ekstrak dari tanaman rumput laut. Struktur karagenan terdiri dari K- Karagenan dibuat dari rantai 1-3 galaktosa, 4- bagian sulfat, 3,6
anhydro, D-galaktosa. Pada kenyataannya 20-50% dari 3,6- anhidro D-galaktosa dapat menjadi sulfat pada karbon nomor 2 dan beberapa dari 3,6 anhidro galaktosa mungkin terjadi sebagai galaktosa 6- sulfate (de Man, 1997).

2.6. Faktor Yang Mempengaruhi Pembuatan Permen

2.6.1. Pemasakan

Faktor utama yang mempengaruhi mutu sukrosa adalah pemanasan. Penggunaan teknik konsentrasi hampu udara dalam proses penggilingan dan pemurnian mengurangi inversi sukrosa menjadi glukosa dan fruktosa dan juga mengurangi pembentukan warna gelap oleh proses karamelisasi. Inversi sukrosa menyebabkan berkurangnya hasil dan kadar air yang tinggi pada produk akhir. Faktor-faktor lain yang mempengaruhi mutu gula termasuk efisiensi proses-proses
penjernihan sari tebu (dengan kapur dan arang) serta kerja mikroorganisme pada tanaman sumber antara panen dan penggilingan (Buckle, et al., 1987).

2.6.2. Doctoring Agent

Doctoring agent pada pembuatan permen berupa gula invert dan sirup glukosa digunakan untuk meningkatkan daya larut sukrosa. Mekanisme *doctoring agent* berdasarkan Cakebread (1975) adalah sebagai berikut:

1. Gula invert yang dibentuk atau yang ditambahkan pada sukrosa tetap dalam bentuk cairan, dan ini terjadi jika sirup glukosa yang ditambahkan jumlahnya lebih besar dari gula invert.

Jumlah gula invert yang dihasilkan selama pemasakan harus dikendalikan secara hati-hati sebab jika terlalu banyak cenderung menyebabkan produk ini akan menyerap air dari udara dan menjadi lengket. Ini disebabkan oleh fruktosa di dalam gula invert bersifat higroskopik. Sebaliknya, jika terlalu kecil gula invert yang diproduksi akan tidak cukup mencegah kristalisasi sucrose tersebut. Sekitar 10-15 persen gula invert merupakan jumlah yang diperlukan untuk menghasilkan suatu produk yang tidak mengkristal/jernih dan tidak lengket (Fox and Cameron, 1970).

Kristalisasi akan terjadi secara spontan tetapi dapat dicegah dengan menggunakan bahan-bahan termasuk sirup glukosa dan gula invert yang tidak mengkristal tetapi sangat menghambat terjadinya kristalisasi pada permen. Bahan
semacam ini disebut "dokter" dan dapat ditambahkan sebagai bahan dari ramuan, atau seperti halnya dengan gula invert, dibuat selama proses pemasakan dengan katalis seperti tartarat untuk menghidrolisis sukrosa (Buckle, et al., 1987).

2.7. Kerusakan Yang Terjadi Pada Pembutan Permen

2.7.1. Kriticalisasi

Masalah utama selama penyimpanan permen adalah terbentuknya kristal-kristal kecil yang biasa dikenal dengan graining, yang menyebabkan produk tidak diterima. Hal ini dikarenakan rekristalisasi sukrosa, yang merupakan bentuk yang sangat sederhana dan dianggap sebagai perpindahan dari molekul ke nukleus (Mc Donald, 1984).

Hal yang mengakibatkan permen mengkristal, menurut Minifie (1989) adalah:

1. Rasio gula/glukosa terlalu tinggi.
2. RH terlalu tinggi.
3. Penambahan dari padatan
4. RH penyimpanan.
5. Suhu penyimpanan.

(Minifie, 1989).

Menurut Buckle et al., (1987), penyebab kristalisasi dan penurunan mutu permen adalah sebagai berikut:

1. Kurangnya "dokter" dalam formulasi.
2. Kondisi penyimpanan yang jelek yang menyebabkan terserapnya air dipermukaan produk menyebabkan kristalisasi
4. Pengisian buah-buahan, kulit (peel) atau jahe yang kurang sempurna pada waktu pembuatan bahan-bahan ini.

5. Kerusakan lain yang mungkin timbul adalah ketengikan oksidatif atau hidrolitik dari komponen lemak dalam permen.

2.7.2. Karamelisasi

Bila gula yang telah mencair tersebut dipanaskan terus sehingga suhunya mencapai titik leburnya, misalnya pada suhu 170°C maka mulailah terjadi karamelisasi gula (Winarno, 1992).

Bentuk dari pigmen karamel disebut browning non enzimatis dengan kehadiran komponen nitrogen. Ketika gula dipanaskan tanpa air atau dipanaskan dalam bentuk larutan yang berkonsentrasi tinggi, rangkaian reaksi yang terjadi akhirnya akan membentuk karamel (de Man, 1997).

2.7.3. Kerusakan Mikroorganisme

Coklat dan produk-produk permen biasanya tidak peka terhadap serangan organisme perusak, karena berkadar air rendah dan oleh karena ERH-nya juga rendah. Akan tetapi fermentasi ragi dapat terjadi bila kandungan padatan di bawah 75% atau pencemaran dengan organisme osmofilik yang sesuai (misalnya : Zygosacharomyces sp) telah terjadi. Kapang dapat tumbuh jika terjadi penegembunan air pada produk karena perubahan suhu yang besar (Buckle, et al., 1987).

2.7.4. Sticky

Kesalahan yang mungkin terjadi pada permen adalah permen menjadi lengket (sticky), karena permen menyerap air dari udara hal ini menurut Minifie (1981) disebabkan oleh:

1. Terlalu banyak kandungan gula invert
2. RH ruang penyimpanan terlalu tinggi, ruang penyimpanan sebaiknya mempunyai RH 45% atau kurang. Permen sebaiknya dibungkus/dikemas pada suhu 32\(^{\circ}\) C.
3. Bahan pembungkus yang tidak cocok ,transfer kelembaban uap air dari pembungkus permen dan kantong pembungkus terlalu tinggi.