BAB II
TINJAUAN PUSTAKA

2.1. Pencemaran Laut

Kehidupan manusia di bumi ini sering bergantung pada lautan, manusia harus menjaga kebersihan dan kelangsungan kehidupan organisme yang hidup di dalamnya. Dengan demikian lautan akan merupakan sabuk pengaman kehidupan manusia di muka bumi ini. Di lain pihak, lautan merupakan tempat pembuangan benda-benda asing dan pengendapan barang sisa yang diproduksi oleh manusia. Lautan juga menerima bahan-bahan yang terbawa oleh air dari daerah pertanian dan limbah rumah tangga, dari atmosfer, sampah dan bahan buangan dari kapal, tumpahan minyak dari kapal tanker dan pengeboran minyak lepas pantai, dan masih banyak lagi bahan yang terbuang ke lautan (Darmono, 2001).

Lautan dapat melarutkan dan menyebarankan bahan-bahan tersebut sehingga konsentrasi menjadi menurun, terutama di daerah laut dalam. Kehidupan pantai, terutama daerah muara sungai, sering mengalami pencemaran berat, yang disebabkan karena proses pencemaran yang berjalan sangat lambat.

2.1.1. Laut Sebagai Tempat Pembuangan Limbah.

Setiap tahun laut atlantik, pasifik dan beberapa pantai laut dangkal digunakan sebagai tempat pembuangan limbah yang jumlahnya mencapai lebih dari 172 juta metrik ton limbah padat.

Diperkirakan 20% dari limbah yang dibuang ke laut ialah limbah industri berupa Lumpur lunak (sludge). Lumpur yang bercampur dengan bahan kimia toksik, agen infeksi, dan bahan padat yang berasal dari endapan pengolahan limbah. Ada empat cara untuk melakukan pembuangan limbah, yaitu dibakar, dikubur, dibuang ke laut, dan diolah untuk menghilangkan bahan toksik, kemudian disebar sebagai pupuk di lahan pertanian.

2.1.2. Sumber-Sumber Merkuri di Laut.

Pada dasarnya ada dua bentuk industri yang menggunakan merkuri, yaitu industri cat dan industri kertas. Pada industri cat terutama digunakan untuk obat antijamur sehingga cat dapat bertahan lama. Sedangkan untuk industri kertas, merkuri digunakan untuk mencegah jamur tumbuh pada kayu pulp sebagai bahan baku kertas tersebut. Industri lain yang menggunakan Merkuri ialah sebagai katalis, terutama pada industri vinil-klorida yang mensintesis plastik.

Sampai tahun 1988 diperkirakan 27% daerah pantai di Amerika tertutup untuk pencarian kerang laut dan 100.000 hewan mamalia laut seperti ikan paus, singa laut, dolfin, dan anjing laut mati mengenaskan karena memakan bahan plastik yang dibuang ke laut. Kapal dagang dan kapal pesiar membuang sampah kantong plastik sekitar 450.000 buah setiap hari, sehingga dapat diperkirakan berapa ribu ton plastik yang dibuang ke laut setiap tahunnya. Dari hal tersebut dapat dibayangkan betapa
terganggunya kehidupan laut oleh ulah manusia yang tidak memikirkan akibat buruk dari perbuatan mereka.

2.2. Merkuri

2.2.1. Sifat-Sifat Merkuri.

Merkuri merupakan elemen alami, oleh karena itu sering mencemari lingkungan. Kebanyakan merkuri yang ditemukan di alam terdapat bentuk gabungan dengan elemen lainnya, dan jarang ditemukan dalam bentuk elemen terpisah.

Komponen merkuri banyak tersebar di karang-karangan, tanah, udara, air dan organisme hidup melalui proses-proses fisik, kimia dan biologi yang kompleks.

Merkuri dan komponen-komponen merkuri banyak digunakan oleh manusia untuk berbagai keperluan. Sifat-sifat kimia dan fisik merkuri membuat logam tersebut banyak digunakan untuk keperluan ilmiah dan industri. Beberapa sifat tersebut adalah sebagai berikut:

1. Merkuri merupakan satu-satunya logam yang berbentuk cair pada suhu kamar \((25^\circ C)\) dan mempunyai titik beku terendah dari semua logam, yaitu \(-39^\circ C\).

2. Kisaran suhu dimana merkuri terdapat dalam bentuk cair sangat lebur, yaitu \(396^\circ C\) dan pada kisaran suhu ini merkuri mengembang secara murni.

3. Merkuri mempunyai volatilitas yang tertinggi dari semua logam.

4. Ketahanan listrik merkuri sangat rendah sehingga merupakan konduktor yang terbaik dari semua logam.
5. Banyak logam yang dapat larut di dalam merkuri membentuk komponen yang disebut amalgam (*alloy*)

6. Merkuri dan komponen-komponennya bersifat racun terhadap makhluk hidup. Hampir semua merkuri diproduksi dengan cara pembakaran merkuri sulfida (*HgS*) di udara, dengan reaksi sebagai berikut:

\[HgS + O_2 \rightarrow Hg + SO_2 \]

Merkuri dilepaskan sebagai udara, yang kemudian mengalami kondensasi, sedangkan gas-gas lainnya mungkin terlepas di atmosfer atau dikumpulkan. Merkuri di dalam terdapat dalam berbagai bentuk sebagai berikut:

1. Merkuri anorganik, termasuk logam merkuri (*Hg*\(^{++}\)) dan garam-garamnya seperti merkuri khlorida (*HgCl*\(_2\)) dan merkuri oksida (*HgO*).

2. Komponen Merkuri organik atau organo merkuri, terdiri dari:

a. Atil merkuri, mengandung hidrokarbon aromatik seperti fenil merkuri asetat

b. Alkil merkuri, mengandung hidrokarbon alifatik dan merupakan merkuri yang paling beracun, misalnya metil merkuri, etil merkuri dan sebagainya.

c. Alkosialkil Merkuri (*R - O - Hg*). (Fardiaz, S. 1992)

2.2.2. Kegunaan Merkuri

Merkuri digunakan dalam berbagai bentuk dan untuk berbagai keperluan, misalnya industri khlor alkali, alat-alat listrik, cat instrumen, sebagai katalis, kedokteran gigi, pertanian, alat-alat laboratorium, obat-obatan, industri kertas,

Fungsi lain dari merkuri dalam produksi alat-alat listrik untuk berbagai keperluan. Sebagai contoh misalnya lampu uap merkuri yang banyak digunakan untuk penerangan jalan-jalan dan pabrik karena mempunyai biaya instalasi dan operasi yang lebih rendah daripada lampu pijar, dan dapat dioperasikan pada voltase tinggi.

Penggunaan merkuri dan komponen-komponennya sebagai fungisida merupakan kegunaan ketiga terbesar dari merkuri. Dalam hal ini merkuri digunakan untuk membunuh jamur di dalam cat, pulp, kertas dan industri-industri pertanian. (Darmono, 2001).
2.2.3. Pencemaran Merkuri di Dalam Air dan Lingkungan.

Penggunaan merkuri di dalam industri-industri, sering menyebabkan pencemaran lingkungan, baik melalui air buangan maupun melalui sistem ventilasi udara. merkuri yang terbuang ke sungai, pantai atau badan air di sekitar industri-industri tersebut kemudian dapat mengkontaminasi ikan-ikan kecil dan makhluk air lainnya termasuk ganggang dan tanaman air. Selanjutnya ikan-ikan kecil dan makhluk air lainnya mungkin akan dimakan oleh ikan-ikan atau hewan air lainnya yang lebih besar atau masuk ke dalam tubuh melalui insang. Kerang juga dapat mengumpulkan merkuri dalam rumahnya. Ikan-ikan dan hewan tersebut kemudian dikonsumsi oleh manusia sehingga manusia dapat mengumpulkan merkuri di dalam tubuhnya. FDA (Food and Drug Administration) menetapkan batasan kandungan merkuri maksimum adalah 0,005 ppm untuk air dan 0,5 ppm untuk makanan, sedangkan WHO (World Health Organization) menetapkan batasan maksimum yang lebih rendah yaitu 0,0001 ppm untuk air. (Fardiaz, S. 1992)

Beberapa penelitian menunjukkan bahwa semua ikan yang tidak terkontaminasi langsung dengan merkuri selama pertumbuhannya masih mengandung merkuri di dalam tubuhnya pada konsentrasi yang rendah, yaitu 0,0005 – 0,075 ppm. Penelitian selanjutnya menunjukkan bahwa pengumpulan merkuri di dalam tubuh ikan bervariasi tergantung dari kondisi dan bagian organ tubuh. Suatu penelitian yang dilakukan dalam tahun 1969 terhadap ikan yang ditumbuhkan di dalam air yang mengandung merkuri dengan konsentrasi di bawah batas yang mematikan, dimana ikan ditempatkan di dalam air tersebut selama satu jam per hari dalam 10 hari,
menunjukkan bahwa pengumpulan merkuri tertinggi terdapat dalam darah, kemudian di dalam ginjal, hati, otak, dan yang terendah terdapat dalam otot. Sisa ikan kemudian dibiarkan didalam air yang bebas merkuri, ternyata setelah 45 minggu, organ-organ tubuh ikan tersebut telah bebas dari merkuri kecuali ginjal dan hati yang masih mengandung merkuri. Dari penelitian-penelitian pencemaran merkuri pada ikan juga dibuktikan bahwa merkuri yang terkumpul di dalam tumbuhan hidup adalah dalam bentuk merkuri organik. (Darmono, 2001).
Gambar 2.1
Aliran merkuri di biosfer

Sumber: Fardiaz S, 1992

Merkuri yang telah dimakan oleh manusia kemudian diserap di usus halus lalu sampai ke hati. Ada juga yang sampai ke ginjal dimana akan keluar melalui kotoran melalui proses ekskresi. Sedangkan sebahagian lagi merkuri masuk ke otak dan syaraf.

2.2.4. Keracunan Merkuri dan Metilasi Biologi.

Keracunan telah sering terjadi dan merupakan keracunan yang cukup serius karena dapat mengakibatkan kematian dan cacat seumur hidup. Keracunan-keracunan tersebut terutama disebabkan oleh konsumsi ikan yang tercemar merkuri atau konsumsi biji-bijian yang diberi perlakuan dengan merkuri.

Walaupun mekanisme keracunan merkuri di dalam tubuh belum diketahui dengan jelas, tetapi beberapa hal mengenai daya racun merkuri dapat dijelaskan sebagai berikut:

1. Semua komponen merkuri dalam jumlah cukup beracun dalam tubuh.
2. Masing-masing komponen merkuri mempunyai perbedaan karakteristik dalam
daya racunnya, distribusi, akumulasi atau pengumpulan, dan waktu retensinya
di dalam tubuh.

3. Transformasi biologi dapat terjadi di dalam lingkungan atau di dalam tubuh
dimana komponen merkuri diubah dari satu bentuk menjadi bentuk yang
lainnya.

4. Pengaruh merkuri di dalam tubuh diduga karena dapat menghambat enzim
dan menyebabkan kerusakan sel disebabkan kemampuan merkuri untuk
terikat dengan group yang mengandung sulfur di dalam molekul yang terdapat
di dalam enzim dan dinding sel. Keadaan ini mengakibatkan penghambatan
aktivitas enzim dan reaksi kimia yang dikatalis oleh enzim tersebut di dalam
tubuh. Sifat-sifat membran dari dinding sel akan rusak karena pengikatan
dengan merkuri sehingga aktivitas sel yang normal akan terganggu.

5. Kerusakan tubuh yang disebabkan oleh merkuri biasanya bersifat permanen,
dan sampai saat ini belum dapat disembuhkan.(Darmono, 2001)

Berbagai bentuk merkuri dan hubungannya satu sama lain serta sifat-sifatnya
dapat dilihat pada gambar berikut ini:
Gambar 2.2. Bentuk Merkuri dan hubungannya satu sama lain serta sifat-sifatnya

Sumber: Fardiaz S, 1992

Gambar 2.2. menunjukkan bagaimana bentuk merkuri dan hubungannya satu sama lain serta sifat-sifatnya. Merkuri organik dapat merusak ginjal, hati dan otak dalam waktu yang lama. Merkuri yang ditransformasi di dalam tubuh dan lingkungan akan
membentuk Aril Hg (organik) dimana dalam jumlah cukup sangat beracun. Sementara merkuri yang ditransformasi oleh mikroorganisme juga akan membentuk Alkil Hg (organik) dimana dalam jumlah cukup akan sangat beracun. Merkuri dalam bentuk Al':il Hg (organik) juga akan merusak semua tenunan, termasuk otak dengan waktu retensinya lama.

2.2.5. Tanda-Tanda Keracunan Merkuri dan Cara Penanggulangannya.

Gejala orang yang terkena keracunan merkuri, biasanya ditandai dengan sakit kepala, sukar menelan, penglihatan menjadi kabur, dan daya dengar menurun. Selain itu, orang yang terkena keracunan merkuri merasa tebal di bagian kaki dan tangannya, mulut terasa tersumbat oleh logam, gusi membengkak dan disertai pula dengan diare. Kematian dapat terjadi karena kondisi tubuh yang makin melemah. Wanita yang sedang hamil akan melahirkan bayi yang cacat apabila ia keracunan merkuri.(Pikiran Rakyat, 2004)

Pengobatan untuk keracunan merkuri dapat dilakukan dengan memindahkan korban dari sumber pencemaran. Dalam kasus keracunan merkuri anorganik, yang dilakukan pertama kali ialah menetralisir merkuri dalam saluran pencernaan dengan pemberian putih telur atau susu.

Sejumlah besar HgCl dapat dikeluarkan dari isi perut bila diberi obat pencahar untuk muntah dari obat pencuci perut. Hal tersebut kemudian diikuti dengan pemberian arang aktif (norit), yang dapat menyerap bahan toksik. Yang paling efektif dalam pengeluaran merkuri organik yaitu dengan menggunakan kelator.
Sampai sekarang belum ada obat yang baik untuk pengobatan toksisitas alkil-merkuri. Tidak satupun bahan kelator yang dapat mengikat bentuk organik merkuri terebut dari sistem saraf pusat. Ramalan penyakit untuk kasus pasien keracunan metil/etil-merkuri adalah fatal dan tidak dapat diobati.

Usaha-usaha pencegahan yang dapat dilakukan adalah:

1. Pestisida alkil merkuri seharusnya tidak boleh digunakan lagi.
2. Penggunaan pestisida yang mengandung komponen merkuri lainnya dibatasi untuk daerah-daerah tertentu.
3. Semua industri yang menggunakan merkuri harus membuang limbah industrinya dengan terlebih dahulu mengurangi jumlah Merkuri sampai batas normal. (Darmono, 2001)

2.3. Jenis-Jenis Ikan.

2.3.1. Ikan Gembung

Deskripsi: Ordo Percomorphi (sub ordo Scombroidae) Famili Scombridae,
mencapai panjang 35 cm, umumnya 20 – 25 cm. Warna biru kehijauan bagian atas, putih kekuningan bagian bawah. Dua baris totol-totol hitam pada punggung, dan satu totol hitam dekat sirip dada. Suatu ban warna gelap memanjang dibagian atas garis rusuk, dan 2 ban warna keemasan di bawah garis rusuk. Sirip punggung abu-abu kekuningan, sedang sirip ekor dan dada agak kekuningan, yang lainnya bening kekuningan.

Daerah sebar : Hampir terdapat di seluruh perairan Indonesia dengan konsentrasi terbesar di Kalimantan Barat (Tg. Satai), Kalimantan Selatan (Pegatan), Laut Jawa, Selat Malaka, Ssel, Arafuru, Teluk Siap dan Filifina.

2.3.2. Ikan Pari

Nama Indonesia : Pari
Nama Inggris : Short tailed butterfly ray
Nama latin : Gymnura micrura
Deskripsi : Ordo : Batoidei, famili : Trygonid, genus Trygon, memiliki ciri badan gepeng, bila dilihat dari atas menyerupai kelelawar. Ekor kecil biasanya bertaburkan bintik-bintik duri seperti amplas. Panjang ekor ini lebih dari setengah lebar diskus. Diskus atau bagian badan yang gepeng itu sendiri kurang lebih sama dengan 1 7/8 kali panjang badan. Sirip punggung yang hanya tinggal bekasnya itu panjangnya kurang lebih sama
dengan mata. Warna bagian atas sawo matang sedikit gelap dan merah, putih pada bagian bawahnya. Warna putih diselang-seling hitam (seperti ular weling) terdapat pada bagian atas ekor, sedang bagian bawahnya putih.

Daerah sebar : diseluruh perairan pantai Indonesia terutama di Laut Jawa, Sumatera, bagian Timur dan Barat, sepanjang Kalimantan, Sulawesi Selatan, Selat Tiworo, dan Arafuru.

2.3.3. Ikan Tongkol

Nama Indonesia : Tongkol
Nama Inggris : *Eastern little tunas*
Nama Latin : *Euthynnus affinis*

2.3.4. Ikan Dencis

Ikan dencis dalam bahasa Inggris dikenal dengan nama sardine. Salah satu jenis dencis yang sangat terkenal adalah Sardinella longiceps. Untuk yang kecil berukuran 10-12,5 cm, sedangkan yang besar 17,9 – 19 cm.

2.3.5. Ikan Mujahir

Ikan mujahir (Tilapia mozambica), memiliki ciri-ciri sisik tebal, warna hitam, memiliki sirip yang keras dan berduri.

Mujahir pertama kali ditemukan di Mozambik (Afrika). Dari Indonesia, mujahir dimasukkan ke Malaysia, Muangthai, Burma, bahkan sampai ke Jamaika dan Haiti. Pertumbuhan ikan ini sangat cepat, mereka berenang bergerombol di permukaan air, sehingga nelayan mudah menjalanya. Ikan ini biasanya hidup di air
payau yaitu pertemuan antara sungai dan laut tetapi kadang-kadang ikan sering berenang kearah laut sehingga nelayan sering mendapat ikan ini di laut.

2.3.6. Ikan Kerapu

Ikan kerapu tergolong dalam suku Serranidae, tubuhnya tertutup oleh sisik-sisik kecil. Kebanyakan tinggal di terumbu karang dan sekitarnya meskipun ada pula yang hidup di pantai sekitar muara sungai.

Nama kerapu biasanya digunakan untuk empat marga ikah yakni Epinephelus, Variola, Plectropoma dan Cromileptes. Yang paling besar ukurannya dan paling kaya jenisnya adalah marga Epinephelus.

Kerapu memiliki ciri-ciri kepalanya merendah dan melancip ke depan, warna dasarnya abu-abu muda disertai bintik-bintik hitam di seluruh tubuhnya.

2.3.7. Ikan Gabus Pasir

Gabus (Periophthalmodon schlosseri) bisa mencerangka naik ke darat atau bertengger pada akar-akar pohon bakau. Ikan ini hidup di zone pasang surut di lumpur pantai yang ada pohon-pohon bakaunya.

Ciri-ciri ikan gabus adalah matanya besar dan mencuat keluar dari kepalanya. Kalau berenang, matanya biasanya berada di atas air. Sirip dadanya pada bagian pangkal berotot, dan sirip ini bisa ditekuk hingga berfungsi seperti lengan yang dapat digunakan untuk mencerangka atau melompat di atas lumpur.
2.3.8. Kerang

Kerang adalah hewan yang termasuk phylum *Mollusca*, dari klas *Pelecypoda*. Jenis-jenis kerang antara lain adalah:

Dari familia *Archidae*, yaitu:

- *Anadara granosa*
- *Anadara anomala*
- *Anadara cuneata*

Dari familia *Tellinidae*, yaitu: *Sotelellina cumingiana*

Dari familia *Mytilidae*, yaitu: *Mytilus viridis*

Ciri-ciri kerang yaitu:

- Mempunyai tubuh yang pipih
- Mempunyai cangkang
- Adanya mantel yang melekat di bawah cangkang.

2.4. Kerangka Konsep