TINJAUAN PUSTAKA

Sifat dan Ciri Tanah Ultisol

Ultisol di Indonesia merupakan bagian terluas dari lahan kering (Upland) dan tersebar luas di Sumatera, Kalimantan, Sulawesi, serta sebagian kecil di Pulau Jawa. Ultisol di Indonesia diperkirakan sekitar 51 juta Ha atau sekitar 29,7 % luas daratan Indonesia. Menurut Mohr dan Vanbaren (1972) komponen kimia Ultisol:

- Kemasaman : Kurang dari 5,5
- Bahan Organik : Rendah sampai sedang
- Kejenuhan Basa : Kurang dari 35 %
- KTK : Kurang dari 24 me/100 g tanah
- Nutrisi : Rendah

Selain itu Ultisol juga mempunyai kendala kemasaman tanah, kejenuhan Al-dd tinggi, kandungan nitrogen rendah, kandungan fosfor dan kalium tanah rendah serta peka terhadap erosi (Munir, 1996).

Ultisol seperti Alfisol mempunyai karakteristik translokasi lempung, tetapi juga pelindian (leaching) yang intensif. Sifat yang mencirikan adalah terbentuknya argilik horison dengan persediaan basa rendah, terutama pada horison yang lebih rendah. Kadar lempung terakumulasi dalam horison tertentu kemudian menurun berangsur kebawah. KPK umumnya rendah, kejenuhan basa makin kebawah menurun karena sirkulasi basa oleh tanaman ataupun pemupukan. Dalam tanah yang belum pernah ditanami kejenuhan basa yang tertinggi hanya beberapa cm dibawah permukaan (Darmawijaya, 1997).

Zeolit

Istilah zeolit berasal dari kata zein (bahasa Yunani) yang berarti membuih dan lithos berarti batu. Nama ini sesuai dengan sifat zeolit yang akan membuih bila dipanaskan pada suhu \(100^\circ\text{C}\). Kerangka dasar struktur zeolit terdiri dari unit-unit tetrahedral AlO\(_4\) dan SiO\(_4\) yang saling berhubungan melalui atom O. Jadi zeolit terdiri dari tiga komponen yaitu kation yang dipertukarkan kerangka Aluminosilikat dan fase air. Ikatan ion Al-Si-O membentuk struktur kristal. Sedangkan logam alkali merupakan sumber kation yang mudah dipertukarkan (Sutarti dan Rachmawati, 1994).

Penggunaan zeolit pada bidang pertanian ditujukan pada beberapa hal yaitu (Hafsah, 1999):
• Tanah dengan pH rendah, dengan sifat basanya zeolit dapat menetralkan pH tanah yang bersifat asam.

• Tinggi kandungan larutan Al dan Fe, ion-ion Fe$^{3+}$ dan Mn$^{2+}$ dalam air mendorong keluar unsur-unsur K, Na, Ca dan Mg. Proses pertukaran ion ini akan terus berlangsung sampai terjadi kesetimbangan dimana baik ion Fe maupun Mn sudah tidak dapat menggantingan K, Na, Ca dan Mg yang ada dalam zeolit.

• Menarik kembali kandungan P$_2$O$_5$ yang terikat dalam koloid tanah, zeolit mampu meningkatkan fosfat dalam tanah karena Ca dan zeolit mudah tersedia dalam bentuk yang dapat dipertukarkan, sehingga Ca dapat mengikat fosfat dalam tanah. Komposisi kimia dari zeolit dapat kita lihat pada tabel berikut ini:

Tabel 1. Komposisi Kimia dari Zeolit

<table>
<thead>
<tr>
<th>Senyawa</th>
<th>Kadar (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>62,75</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>13,63</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>2,12</td>
</tr>
<tr>
<td>CaO</td>
<td>3,43</td>
</tr>
<tr>
<td>MgO</td>
<td>0,87</td>
</tr>
<tr>
<td>Na$_2$O</td>
<td>1,32</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>1,39</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>0,24</td>
</tr>
<tr>
<td>P$_2$O$_5$</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Keberadaan Al Dalam Tanah

\[
\begin{align*}
\text{Lempung} & \quad \text{Al} + 3\text{H}_2\text{O} \quad \rightarrow \quad \text{Al(OH)}_3 + \text{H}^+ \\
\text{Lempung} & \quad \text{H}^+
\end{align*}
\]

Reaksi tersebut menyumbang pada peningkatan konsentrasi ion H⁺ dalam tanah (Tan, 2000).

Pertumbuhan tanaman sangat dipengaruhi oleh pH tanah baik langsung maupun tidak langsung. Nilai pH tanah memeengaruhi ketersediaan N, P, Ca, Mg dan unsur mikro serta kelarutan unsur yang beracun seperti Al dan Mn. Pada pH yang
rendah Ca, Mg dan P kurang tersedia, sedangkan unsur mikro tersedia. Tetapi unsur Al yang beracun sangat tinggi, gejala keracunan Al antara lain adalah akar tumbuh gemuk pendek, dinding sel akan menebal dan kaku, akar cabang sedikit dan tanpa bulu akar, dan akar cenderung tumbuh keatas (Hakim, dkk., 1986)

Kation-kation yang terdapat dalam kompleks jerapan koloid dapat dibedakan menjadi kation-kation basa dan kation-kation asam. Termasuk kation basa adalah Ca$^{2+}$, Mg$^{2+}$, K$^{+}$ dan Na$^{+}$, sedangkan yang termasuk kation asam adalah H$^{+}$ dan Al$^{3+}$. Tanah-tanah dengan kejenuhan basa rendah berarti kompleks jerapan lebih banyak diisi oleh kation-kation asam yaitu Al$^{3+}$ dan H$^{+}$, apabila jumlah kation asam terlalu banyak terutama Al$^{3+}$, dapat merupakan racun bagi tanaman, keadaan seperti ini terdapat pada tanah-tanah masam (Hardjowigeno, 1995).

ABU JANJANG KELAPA SAWIT

Perlakuan kompos abu janjang kelapa sawit pada tanaman jagung dirumah kaca menghasilkan biji jagung. hasil sama dapat saja terjadi pada tanaman musim kering, untuk itu perlu dilakukan penelitian lebih lanjut pada berbagai tanaman lainnya (Lahuddin, dkk., 1988)

(Suhardjo, dkk., 1993 dalam harahap, 2000)

Tanaman Jagung

Sebelum dilakukan penanaman tanah yang sudah diolah diberi pupuk dasar untuk menambah unsur hara didalam tanah agar dapat diserap tanaman sebagai pupuk
dasar umumnya digunakan pupuk kandang dan jenis pupuk buatan seperti UREA, TSP dan KCl yang diberi pada saat penanaman (Anonimous, 2000)

Tanaman jagung termasuk dalam famili *Gramineae* dengan taksonomi sebagai berikut:

Divisio : Spermatophyta
Sub divisio : Angiospermae
Class : Monocotiledoneae
Ordo : Gruniflorae
Famili : Gramineae
Genus : Zea
Spesies : Zea mays

(Tobing, dkk., 1995).

Jagung tidak menuntut persyaratan lingkungan yang terlalu ketat, persyaratan lingkungan yang harus dipenuhi antara lain (Danarti dan Najarti, 1992):

1. Menghendaki penyinaran matahari yang penuh. Ditempat yang teduh pertumbuhan jagung merana.

2. menghendaki suhu optimun 21-34 °C. di Indonesia suhu semacam ini di daerah dengan ketinggian 0-600 mdpl.

4. Membutuhkan air yang cukup, terutama pada saat awal pertumbuhannya yaitu stadia pembungaan dan pengisian biji.
Sebelum ditanam, sebaiknya benih dicampur dahulu dengan ridomil agar terhindar dari penyakit Bulai. Penaburan benih pada lubang tanam sebaiknya sekalian dibir Furadon dan Indofuran sebanyak 1-2 g untuk melindungi benih dari serangan serangga. Bersamaan dengan penanaman perlu dilakukan pemberian pupuk dasar berupa Urea 100 Kg /Ha, TSP 228 Kg/Ha, KCl 72 Kg/Ha dan ZA 50 Kg/Ha (Setiawan, 1995)

Tanaman jagung sebaiknya mendapat cahaya matahari yang langsung pada waktu tanaman mulai tua menuju masaknya Biji dibutuhkan keadaan panas dan intensitas cahaya yang cukup (Ginting, 1995)

Jagung merupakan salah satu komoditi pangan yang penting dan banyak diusahakan petani karena jagung merupakan makanan pokok kedua setelah beras. Telah banyak pakar melaporkan bahwa tanaman jagung termasuk salah satu tanaman yang kurang atau tidak toleran terhadap keracunan Al (Damar, 1992)

Produksi jagung dalam negeri tergolong rendah yaitu rata-rata 22,03 Kwintal /Ha, Dengan demikian masih diperlukan usaha untuk meningkatkan produksi jagung (Soeprapto, 1994)

Menurut Lingga (1993) Bahwa dosis anjuran untuk pemberian bahan organik kedalam tanah sebesar 20-30 ton/ha. Dosis anjuran pupuk dasar pada tanaman jagung, Pupuk N sebesar 250 ppm/ha; Pupuk P 200 ppm/ha sedangkan pupuk KCl sebesar 150 ppm/ha untuk meningkatkan produksi, rekomendasi pemupukan jagung disarankan urea diberikan dalam tiga tahap yaitu 1/3 bagian pada waktu tanam sebagai pupuk dasar, 1/3 lagi diberikan pada usia 30 hari, dan 1/3 lagi setelah setelah berumur 45 hari.