BAB II
TINJAUAN PUSTAKA

2.1. Sanitasi Makanan dan minuman

Makanan dan minuman merupakan bahan yang sangat dibutuhkan oleh mahluk hidup, yang berguna bagi kelangsungan hidupnya. Makanan yang kita butuhkan tidak hanya untuk pertumbuhan dan perkembangan fisik saja, melainkan juga untuk melindungi kesehatan. Namun demikian makanan dan minuman dapat pula membahayakan kesehatan manusia karena dapat berperan sebagai perantara berbagai macam penyakit.

Untuk kelangsungan hidupnya manusia membutuhkan makanan yang cukup gizi, higienis dan aman. Oleh karena itu kualitas makanan harus senantiasa terjamin setiap saat, agar masyarakat sebagai pemakai produk makanan dapat terhindar dari penyakit karena makanan. Salah satunya adalah saus cabe yang cukup digemari oleh masyarakat dan dikonsumsi dengan berbagai cara.

Lingkungan merupakan salah satu faktor yang dapat mempengaruhi kualitas makanan. Dari sudut kesehatan lingkungan pengaruh makanan dan minuman terhadap kesehatan yang harus diperhatikan adalah peranan makanan dan minuman sebagai vektor atau agen penyakit yang ditularkan melalui makanan dan minuman. Makanan dan minuman disini secara umum adalah semua bahan, baik dalam bentuk alamiah maupun buatan kecuali air dan obat-obatan. (Depkes RI, 1994)

Bermacam-macam penyakit dapat ditularkan melalui makanan oleh karena keadaan lingkungan yang kurang baik. Faktor lingkungan yang dapat mempengaruhi makanan dan minuman dapat digolongkan menjadi 3 golongan yaitu:
1. Lingkungan fisik

Lingkungan fisik meliputi: air, tanah, udara, sinar matahari dan suhu.

2. Lingkungan kimia

Lingkungan kimia meliputi: Pesticida, food additive (BTM), antibiotika dan logam-logam.

3. Lingkungan biologi

Lingkungan biologi meliputi: jasad renik, tumbuh-tumbuhan, hewan dan manusia. (Buckle, 1987)

2.2. Cabe (Capsicum sp) dan Kesehatan

Cabe merupakan salah satu jenis sayuran penting yang merupakan sumber vitamin A dan C untuk meningkatkan kesehatan masyarakat. Buah cabe dapat dimanfaatkan untuk banyak keperluan, baik yang berhubungan dengan kegiatan masak memasak maupun untuk keperluan yang lain seperti untuk bahan ramuan obat tradisional.

Buah cabe yang kaya vitamin A, penting bagi kesehatan mata yaitu untuk mencegah kebutaan. Vitamin ini dapat menyembuhkan sakit tenggorokan, mengobati luka. Buah cabe mengandung kadar vitamin C yang tinggi yang dapat dimanfaatkan sebagai campuran industri makanan, obat-obatan dan peternakan. (Setiadi, 1997).

Buah cabe rasanya pedas. Rasa pedas yang terdapat pada buah cabe disebabkan oleh adanya kandungan capsaicin. Kandungan capsaicin digunakan secara luas untuk menyembuhkan berbagai penyakit. Misalnya: gangguan pada tulang, reumatik, sakit kepala, sakit pinggang, bisul pada anak-anak, sakit perut,
diare, gangguan pada tulang, kram, sakit gigi, polio, penyakit mata, infeksi sistem pencernaan, bronkhitis, influenza, masuk angin, sinusitas, usus buntu dan asma. Capsaicin disajikan dalam bentuk larutan capsicum yakni buah cabai yang diolah dalam bentuk kapsul

Larutan capsicum ini bermanfaat untuk:

1. Menurunkan kolesterol
2. Menurunkan gula darah
3. Mengatur suhu tubuh

Bubuk buah cabe dapat dimanfaatkan, sebagai bahan industri makanan dan minuman untuk menggantikan fungsi lada dan sekaligus untuk memancing selera makan konsumen. Bubuk buah cabe juga dapat digunakan sebagai bahan baku dalam pembuatan minuman ginger beer. Selain itu bubuk buah cabe dapat dijadikan sebagai bahan obat penenang. (Cahyono, 2003).

Berdasarkan banyaknya khasiat yang diperoleh dari buah cabe maka selain menjadi konsumsi umum bagi masyarakat, ia bisa menjadi suatu bahan makanan yang utama untuk meningkatkan kesehatan.

2.3. Komposisi Kimia Buah Cabe

Tanaman cabe (Capsicum sp) merupakan tanaman tahunan yang berumur pendek, berbentuk perdu, berdiri tegak dengan batang berkayu, memiliki banyak cabang, termasuk famili Solanaceae, ordo Tubiflorae dan Dicotyledoneae. Pertama sekali ditemukan di daerah Amerika Selatan pada tahun 1492. (Prajnanta, 2005)
dalam pangan untuk mempengaruhi sifat atau bentuk pangan, antara lain bahan pewarna, penyedap rasa, pengawet, anti gumpal, pemucat dan pengental. (Dep. Kes RI dan Dirjen POM, 1997).

Bahan Tambahan Makanan (BTM) yang digunakan harus mempunyai sifat-sifat sebagai berikut: dapat mempertahankan nilai gizi makanan tersebut, tidak mengurangi zat-zat esensial di dalam makanan, dan menarik bagi konsumen tetapi tidak merupakan penipuan. BTM yang tidak boleh digunakan diantaranya adalah yang mempunyai sifat-sifat sebagai berikut: dapat merupakan penipuan bagi konsumen, menyembunyikan kesalahan dalam teknik penanganan atau pengolahan, dapat menurunkan nilai gizi makanan, atau jika tujuan dari penambahan BTM tersebut ke dalam makanan masih dapat digantikan oleh perlakuan-perlakuan lain-lain yang lebih praktis dan ekonomis (Winarno, 1980).

Bahan Tambahan Makanan (BTM) dibagi menjadi dua bagian besar yaitu: (Anonimous, 1985):

1. Bahan Tambahan Makanan Intensional (dengan sengaja ditambahkan)

Bahan Tambahan Makanan (BTM) Intensional adalah suatu bahan baik berasal dari alam maupun sintetik sebagai produk industri kimia yang diberikan dengan sengaja dengan maksud dan tujuan tertentu. Penggunaan BTM tidak boleh sewenang-wenang tetapi harus menurut peraturan-peraturan tentang jenis dan batas-batas penggunaannya. Maksud penambahan BTM antara lain adalah misalnya untuk meningkatkan konsistensi, mengendalikan keasaman atau kebasaan, memantapkan bentuk dan rupa sehingga membuat makanan menarik dengan pemberian warna dan
dalam pangan untuk mempengaruhi sifat atau bentuk pangan, antara lain bahan pewarna, penyedap rasa, pengawet, anti gumpal, pemucat dan pengental. (Dep. Kes RI dan Dirjen POM, 1997).

Bahan Tambahan Makanan (BTM) yang digunakan harus mempunyai sifat-sifat sebagai berikut: dapat mempertahankan nilai gizi makanan tersebut, tidak mengurangi zat-zat esensial di dalam makanan, dan menarik bagi konsumen tetapi tidak merupakan penipuan. BTM yang tidak boleh digunakan diantaranya adalah yang mempunyai sifat-sifat sebagai berikut: dapat merupakan penipuan bagi konsumen, menyembunyikan kesalahan dalam teknik penanganan atau pengolahan, dapat menurunkan nilai gizi makanan, atau jika tujuan dari penambahan BTM tersebut ke dalam makanan masih dapat digantikan oleh perlakuan-perlakuan lain yang lebih praktis dan ekonomis (Winarno, 1980).

Bahan Tambahan Makanan (BTM) dibagi menjadi dua bagian besar yaitu:
(Anonimous, 1985):

1. Bahan Tambahan Makanan Intensional (dengan sengaja ditambahkan)
Bahan Tambahan Makanan (BTM) Intensional adalah suatu bahan baik berasal dari alam maupun sintetik sebagai produk industri kimia yang diberikan dengan sengaja dengan maksud dan tujuan tertentu. Penggunaan BTM tidak boleh sewenang-wenang tetapi harus menurut peraturan-peraturan tentang jenis dan batas-batas penggunaannya.

Maksud penambahan BTM antara lain adalah misalnya untuk meningkatkan konsistensi, mengendalikan keasaman atau kebasaan, memantapkan bentuk dan rupa
sehingga membuat makanan menarik dengan pemberian warna dan aroma, mempertahankan atau mempertinggi mutu gizi serta untuk mengawetkan makanan.

Bahan Tambahan Makanan (BTM) Intensional sintetik menurut fungsinya dapat pula dibagi sebagai berikut:

a. Yang tidak bergizi, yang termasuk di dalamnya adalah:

- Anti oksidan
- Anti kempal
- Pengasam, penetral, pendapor
- Enzim
- Pemanis buatan
- Pemutih dan pematang
- Pengawet
- Pengemulsi, pemantap, pengental
- Pengeras
- Pewarna
- Penyedap rasa dan aroma
- Sekuestran

b. Yang bergizi (nutrient suplement) untuk maksud yang berlain-lainan, seperti:

- Restorasi
 penambahan bahan bergizi untuk mendapatkan tingkat konsentrasi dari bahan pangan asal.
- Fortifikasi
penambahan nutrien sehingga tingkat konsentrasi lebih tinggi dari tingkat konsentrasi yang biasa terdapat dalam bahan pangan semula.

- Enrichment
yakni penambahan nutrien yang tidak ada pada bahan semula.

- Standardization
penambahan nutrien agar kehadiran nutrien (satu atau lebih) di dalam makanan terolah tetap terjamin pada tingkat konsentrasi tertentu.

2. Bahan Tambahan Makanan Insidental (tidak sengaja ditambahkan)

Bahan Tambahan Makanan (BTM) Insidental terdapat dalam makanan dalam jumlah yang sangat kecil sebagai akibat dari proses pengolahan sehingga BTM ini berada dalam makanan terolah secara tidak sengaja dan tidak diinginkan. Bahan-bahan ini turut atau terjadi mulai dari penanaman di ladang, selama pengolahan atau merembes dari wadah selama penyimpanan.

Bila dilihat dari sumber asalnya, BTM dapat berasal dari sumber alamiah seperti lesitin, asam sitrat dan lain sebagainya; dapat juga disintesis dari bahan kimia yang mempunyai sifat serupa benar dengan bahan alamiah yang sejenis, baik susunan kimia maupun sifat metabolismenya. Pada umumnya bahan sintetik mempunyai kelebihan yaitu lebih pekat, lebih stabil dan lebih murah. Walaupun demikian ada kelemahannya yaitu sering terjadi ketidaksempurnaan proses sehingga mengandung zat-zat yang berbahaya bagi kesehatan, dan kadang-kadang bersifat karsinogenik yang dapat merangsang terjadinya kanker pada hewan dan manusia (Winarno, 1991).
2.4.1. Bahan Tambahan Makanan (BTM) yang Diizinkan

Bahan Tambahan Makanan (BTM) yang diizinkan digunakan pada makanan berdasarkan Permenkes RI Nomor 1168/Menkes/Per/IX/1999 adalah:

1. Bahan Tambahan Makanan (BTM) yang terdiri dari golongan:
 a. Antioksidan

 BTM yang dapat mencegah atau menghambat proses oksidasi lemak sehingga mencegah terjadinya ketengikan.

 Contoh: asam askorbatis, asam eritorbat, butil hidroksi toluen.

 b. Antikempal

 BTM yang dapat mencegah mengempalnya (menggumpalnya) makanan yang berupa serbuk seperti tepung atau bubuk.

 Contoh: alumuniun silikat, magnesiun karbonat, miristat.

 c. Pengatur keasaman (pengasam, penetral, pendaper)

 BTM yang dapat mengasamkan, menetralkan dan mempertahankan derajat keasaman.

 d. Pemanis buatan

 BTM yang dapat menyebabkan rasa manis pada makanan, yang tidak atau hampir tidak mempunyai nilai gizi.

 Contoh: sakarin, siklamat, sorbitol.

 e. Pemutih dan pematang tepung

 BTM yang dapat mempercepat proses pemutihan dan atau pematangan tepung sehingga dapat memperbaiki mutu pemanggangan.

 Contoh: natrium karbonat, natrium sitrat, natrium malat.
f. Pengemulsi, pemantap, pengental

BTM yang dapat membantu terbentuknya dan memantapkan sistem dispersi yang homogen pada makanan.
Contoh: agar, amonium alginat, gelatin.

g. Pengawet

BTM yang dapat mencegah atau menghambat fermentasi, pengasaman atau penguraian lain pada makanan yang disebabkan oleh pertumbuhan mikroba.
Contoh: natrium benzoat, asam sorbat, natrium bisulfit.

h. Pengeras

BTM yang dapat memperkeras atau mencegah melunaknya makanan.
Contoh: alumunium sulfat, kalsium glukonat, kalsium laktat.

i. Pewarna

BTM yang dapat memperbaiki atau memberi warna pada makanan.
Contoh: karamel, kantasanin, betakaroten.

j. Penyedap rasa dan aroma, penguat rasa

BTM yang dapat memberikan, menambah atau mempertegas rasa dan aroma.
Contoh: asam butirat, etil vanilin, benzaldehida.

k. Sekuestran

BTM yang dapat mengikat ion logam yang ada dalam makanan, sehingga memantapkan warna, aroma dan tekstur.
Contoh: asam fosfat, asam sitrat, natrium pirofosfat.
2. Untuk makanan yang diizinkan mengandung lebih dari satu makanan anti oksidan, maka hasil bagi masing-masing bahan dengan batas maksimum penggunaannya jika dijumlahkan tidak boleh lebih dari satu.

3. Untuk makanan yang diizinkan mengandung lebih dari satu macam pengawet, maka hasil bagi masing-masing bahan dengan batas maksimum penggunaannya jika dijumlahkan tidak boleh lebih dari satu.

4. Batas penggunaan "secukupnya" adalah penggunaan yang sesuai dengan cara produksi yang baik, yang maksud jumlah yang ditambahkan pada makanan tidak melebihi jumlah wajar yang diperlukan sesuai dengan tujuan penggunaan bahan tambahan makanan tersebut.

5. Pada bahan tambahan makanan golongan pengawet, batas maksimum penggunaan garam benzoat dihitung sebagai asam benzoat, garam sorbat sebagai asam sorbat dan senyawa sulfit sebagai SO₂

2.4.2. Bahan Tambahan Makanan (BTM) yang tidak diizinkan

Bahan tambahan makanan yang tidak diizinkan atau dilarang digunakan dalam makanan karena bersifat karsinogenik berdasarkan Permenkes RI Nomor 1168/Menkes/Per/IX/1999 adalah:

1. Asam borat (boric acid) dan senyawanya
2. Asam salisilat (salicylic acid) dan garamnya
3. Dietilpirokarbonat (diethylpyrocarbonate, DEPC)
4. Dulsin (dulcin)
5. Kalium klorat (potassium chlorate)
6. Kloramfenikol (chloramphenicol)
7. Minyak nabati yang dibrominasi
8. Nitrofurazon (nitrofurazone)
9. Formalin(formaldehyde)
10. Kalium Bromat

2.4.3. Bahan Pengawet

Bahan pengawet umumnya digunakan untuk mengawetkan makanan yang mempunyai sifat mudah rusak. Zat ini dapat menghambat, memperlambat proses fermentasi, pengasaman atau penguraian yang disebabkan mikroba, tetapi tidak jarang juga digunakan pada makanan yang relatif awet dengan memperpanjang masa simpan atau memperbaiki tekstur.

Pengawet yang banyak dijual di pasaran dan digunakan untuk mengawetkan berbagai makanan adalah benzoat yang umumnya terdapat dalam bentuk natrium benzoat yang bersifat lebih mudah larut. Penggunaan pengawet dalam makanan harus tepat baik jenis maupun dosisnya.

Beberapa bahan tambahan makanan sebagai pengawet ada yang membahayakan kesehatan, baik secara langsung maupun tak langsung. Reaksi langsung antara lain muntah-muntah, diare, atau pusing-pusing. Sementara efek pengkonsumsian bahan pengawet yang tidak secara langsung dirasakan setelah jangka waktu yang panjang sehingga membuat konsumen menjadi pihak yang dirugikan. Bahan pengawet sangat potensial menimbulkan kanker.
2.4.3.1. Pengawet Natrium Benzoat

Bahan pengawet adalah suatu zat kimia yang ditambahkan kedalam bahan pangan yang dapat menghambat atau menghentikan aktivitas mikroba seperti bakteri, kapang, khamir untuk mencegah terjadinya kerusakan bahan pangan tersebut. (Dep. Pertanian, 2002).

Salah satu metoda pengawetan yang dilakukan pada produk bahan pangan adalah dengan menggunakan bahan pengawet kimia seperti natrium benzoat. Bahan pengawet kimia dapat mengganggu pertumbuhan mikroba yaitu dengan cara mengganggu kerja enzim dan sitem mekanisme genetis (Rusmarilin, 1985).

Pengawet natrium benzoat dengan rumus kimia C₇H₅O₂Na merupakan kristal putih yang dapat ditambahkan secara langsung ke dalam makanan atau dilarutkan terlebih dahulu di dalam air atau pelarut-pelarut lainnya. Natrium Benzoat lebih efektif digunakan dalam makanan-makanan yang asam sehingga banyak digunakan sebagai pengawet di dalam sari buah-buahan, jelly, sirup dan makanan lainnya yang mempunyai pH rendah. (Winarno, 1980).

Pengawet natrium benzoat dibuat dari penambahan natrium karbonat pada suspensi air asam benzoat. Produknya mempunyai rasa astrigen dan manis, stabil di udara dan tidak berbau (Wilson dan Gisvold, 1982).

Mekanisme kerja natrium benzoat sebagai bahan pengawet adalah berdasarkan permeabilitas membran sel mikroba terhadap molekul-molekul asam benzoat yang tidak terdisosiasi. Molekul-molekul asam benzoat tersebut mencapai sel mikroba yang membentuk selnya mempunyai sifat permeabel terhadap molekul-molekul asam benzoat yang tidak terdisosiasi. Sel mikroba yang mempunyai pH
cairan sel netral akan dimasuki molekul asam benzoat, maka molekul asam benzoat akan terdisosiasi menghasilkan ion H⁺ sehingga akan menurunkan pH mikroba tersebut. Akibatnya metabolisme sel akan terganggu dan akhirnya mati. (Siregar, 1981)

Menurut penelitian yang dilakukan mahasiswa Pertanian, terhadap pengawetan saus tomat dengan natrium benzoat di Fakultas Pertanian Universitas Sumatera Utara Medan, menunjukkan bahwa vikositas atau kekentalan saus tomat sudah tidak bagus lagi setelah 2 minggu. Vikositas dipengaruhi oleh penambahan maizena ke dalam saus. Rasa saus tomat mengalami penurunan setelah 2 minggu disebabkan oleh terjadinya aktivitas mikroorganisme yang menguraikan komponent-komponen dalam saus tomat. (Juhendri dkk, 2000).

2.4.3.2. Dampak Pengawet Natrium Benzoat Terhadap Kesehatan

Penggunaan bahan pengawet natrium benzoat tidak selalu aman terutama jika digunakan dalam jumlah yang berlebihan. Pengkonsumsian natrium benzoat secara berlebihan dapat menyebabkan keram perut, rasa kebas di mulut, bagi mereka yang mengalami lelah atau mempunyai penyakit ruam kulit (seperti jenis urtikaria
dan eksem). Pengawet ini dapat memperburuk keadaan juga bersifat menumpuk (akumulatif) yang potensial menimbulkan penyakit kanker dalam jangka panjang dan ada juga laporan yang menunjukkan bahwa pengawet ini dapat merusak sistem saraf (Awang, 2003).

2.4.3.3. Acceptable Daily Intake (ADI) Natrium Benzoat

Semua bahan kimia jika digunakan secara berlebihan pada umumnya akan bersifat racun (toksik) bagi hewan dan manusia. Oleh karena itu perlu ditetapkan batas asupan harian (daily intake) bahan tambahan kimiawi untuk perlindungan kesehatan konsumen.

Acceptable Daily Intake (ADI) adalah suatu batasan berapa banyak konsumsi bahan tambahan makanan yang dapat diterima dan dicerna setiap hari seumur hidup tanpa mengalami resiko kesehatan. ADI dihitung berdasarkan berat badan konsumen. ADI dinyatakan dalam satuan mg bahan tambahan makanan per kg berat badan. ADI untuk natrium benzoat adalah maksimal sebesar 5 mg/kg berat Badan (Winarno dan Rahayu, 1994).

Di Indonesia dan negara-negara berkembang lainnya digunakan berat badan standard sebesar 50 kg untuk orang dewasa. Anak-anak lebih peka atau mempunyai daya tahan /toleransi yang lebih rendah terhadap bahan tambahan makanan dibandingkan dengan orang dewasa untuk berat badan yang identik atau per satuan berat badan. Berdasarkan kebutuhan kalori per kilogram berat badan untuk orang dewasa, yaitu sekitar 40 kalori dan anak-anak 100 kalori, maka faktor keamanan untuk anak-anak yang digunakan adalah 2,5; artinya dalam perhitungan batas
maksimum penggunaan berat badan orang dewasa perlu dibagi dengan 2,5 untuk mendapatkan batas maksimum penggunaan untuk konsumsi anak-anak. (Winarno dan Rahayu, 1994).

2.5. Membuat Saus Cabe

Saus cabe adalah saus yang diperoleh dari pengolahan cabe yang matang, dan berkualitas baik dengan tambahan bahan-bahan lain yang digunakan sebagai penyedap/ penambah rasa pada makanan (Purwono, 2003).

2.5.1. Bahan dan Peralatan

Bahan baku yang digunakan untuk membuat saus cabe adalah semua bahan harus dalam kondisi baik, bersih, bebas serangga. Bahan-bahannya adalah: cabe, bawang putih, garam dapur, gula pasir, tomat, asam cuka, maizena, natrium benzoat, air. Air yang merupakan komponen penting dalam mempengaruhi bentuk, tekstur, bau dan rasa juga harus dalam kondisi baik. Peralatan yang digunakan adalah: pisau, blender, wadah pemasak saus, kompor, kemasan botol, sendok.

2.5.2. Cara Membuat Saus Cabe

1. Siapkan cabe segar, tambahkan dengan bawang putih

2. Cabe tersebut dicuci hingga bersih, kemudian dibuang tangkai buah dan bijinya.

3. Buah cabe tanpa biji dikukus pada suhu 100°C selama 1-2 menit.

4. Cabe diangkat dari perapian kemudian digiling sampai halus sambil ditambah garam, natrium benzoat, tomat, gula pasir, asam cuka 25%, maizena dan air.
5. Hasil penggilingan yang berupa bubur cabe dan bawang putih kemudian diaduk-aduk sampai rata.

6. Bubur cabe tersebut dimasak di atas api kecil sampai mendidih pada suhu 95° C selama 5 menit hingga mengental dan menjadi saus.

7. Saus dimasukkan dalam botol steril untuk segera dipanaskan.

8. Botol berisi saus cabe ditutup rapat dan dikemas

2.6. Kerangka Konsep

![Diagram Konsep Saus Cabe]