TINJAUAN PUSTAKA

Botani Tanaman

Kedudukan tanaman kedelai dalam sistematika tumbuhan (taksonomi) diklasifikasikan sebagai berikut:

Kingdom : Plantae
Divisio : Spermatophyta
Sub-divisio : Angiospermae
Class : Dicotyledoneae
Ordo : Polypetales
Famili : Leguminosae (Papilionaceae)
Sub-famili : Papilionaceae
Genus : Glycine
Species : *Glycine max* L. Merrill. Sinonim dengan *G. soja* (L.) Sieb & Zucc. atau *Soya max* atau *S. hispida*.

(Rukmana dan Yuniasih, 2001).

Kedelai merupakan tanaman semusim berupa semak rendah, tumbuh tegak lurus, berakar tunggang, berakar lebat, dengan beragam morfologi. Tinggi tanaman berkisar antara 10 - 200 cm dan bercabang sedikit atau banyak tergantung kultivar dan lingkungan hidup. Respon kedelai terhadap perubahan faktor lingkungan akan menguntungkan dengan memilih varietas yang sesuai, pemupukan dan populasi tanaman yang tepat (Hidayat, 1985).

Tanaman kedelai mempunyai dua periode tumbuh, yaitu periode vegetatif dan periode reproduktif. Periode vegetatif adalah periode tumbuh dari mulai munculnya tanaman di permukaan tanah sampai terbentuknya buaga pertama. Lamanya periode vegetatif tergantung dari genetik dan lingkungan, terutama panjang dari daerah beriklim dingin berkisar antara 6-8 minggu. Di daerah
tropis, vegetatif sebagian besar kultivar berkisar antara 4-5 minggu. Periode reproduktif menyusul periode vegetatif; kuncup-kuncup ketiak daun berkembang membentuk kelompok-kelompok bunga (Hidayat, 1985).

Susunan akar pada kedelai pada umumnya sangat baik. Pertumbuhan akar tunggang lurus masuk kedalam tanah dan mempunyai banyak akar cabang. Pada akar akar cabang terdapat bintil-bintil akar berisi bakteri Rhizobium Jafonicum, yang mempunyai kemampuan mengikat zat lemas
(N₂) dari udara, yang kemudian digunakan untuk menyuburkan tanah (Anonimous, 1989).

Metode Kultur Jaringan

Kultur jaringan atau kultur in Vitro adalah suatu usaha untuk mengisolasi bagian dari tanaman seperti kultur protoplasma, sel, jaringan atau organ serta menumbuhkannya dalam kondisi aseptik sehingga bagian-bagian tersebut dapat memperbanyak diri dan beregenerasi menjadi tanaman lengkap (Gunawan, 1987).
Teknik kultur jaringan berdasarkan pada konsep totipotensi. Berdasarkan konsep tersebut sebuah sel atau jaringan tumbuhan yang diambil dari bagian manapun akan dapat tumbuh menjadi tanaman sempurna kalau diletakan dalam media tumbuh yang sesuai. Kultur jaringan dapat menghasilkan jutaan tanaman yang mempunyai sifat genetik yang sama dari satu bagian tanaman, sehingga pemuliaan tanaman dapat mengembangkan sejumlah besar tanaman dengan cepat dalam waktu yang singkat (Widarto, 1996).

Perbanyakan tanaman melalui kultur jaringan dapat dilakukan satu dari tiga metode yaitu metode embrio, embriogenesis somatik dan organogenesis. Kultur embrio adalah kultur aseptik dari embrio zigotik. Embrio diambil dari biji atau ovule dan ditumbuhkan pada lingkungan pengganti endosperm (yaitu media yang mengandung hara). Selanjutnya perkecambahan dan perkenmbangan embrio
terjadi sebagaimana perkecambahan dan perkembangan embrio dari biji (Tisserat, 1985)

Eksplan

Eksplan adalah bahan tanaman yang dipakai untuk perbanyakan tanaman dengan system kultur jaringan, misalnya jaringan meristem tunas atau daun muda, kepala sari atau tepung sari, putik lembaga (endosperm) atau embrio, kotiledon atau hipokotil (Hendaryono dan Wijayani, 1994).

Cara memilih eksplan harus didasari oleh ilmu pengetahuan tentang sel, yaitu bagian-bagian tanaman yang mempunyai sel aktif membelah. Pada bagian sel ini (sel meristem) mengandung hormon tanaman, sehingga hasilnya dapat diharapkan (Hendaryono dan Wijayani, 1994).

Sumber eksplan dapat mempengaruhi pertumbuhan potensial morfogenetiknya. Eksplan yang berasal dari jaringan muda masih aktif melakukan pembelahan sel membentuk jaringan kalus. Guna mendapatkan kalus, lebih

Universitas Sumatera Utara
baik digunakan daun berikut dengan tulang daunnya (Wattimena, 1992).

Konsep yang umum diketahui bahwa bagian tanaman yang dikerat masih mengandung suplai makanan serta hormon untuk potongan tanaman itu sendiri, sehingga makin besar keratan, makin besar kemampuannya untuk dirangsang dan beregenerasi. Ukuran eksplan yang paling baik adalah 0.5 - 1 cm. Namun ukuran ini dapat bervariasi bergantung material tanaman yang dipakai dan jenis tanamannya (Katuuk, 1989).

Ukuran yang terlampaup kecil akan kurang daya tahannya bila dikulturkan, sementara bila terlampau besar akan sulit mendapatkan eksplan yang steril (Wattimena, 1992).

Zat Pengatur Tumbuh

Zat pengatur tumbuh adalah senyawa organik bukan hara, yang dalam jumlah sedikit dapat mendukung, menghambat dan dapat merubah proses fisiologi tumbuhan. Zat pengatur tumbuh dalam tanaman terdiri dari lima kelompok yaitu auksin, sitokinin, etilen, giberelin, dan inhibitor dengan ciri khas serta pengaruh yang berlainan terhadap proses fisiologis. Golongan auksin yang sering
baik digunakan daun berikut dengan tulang daunnya (Wattimena, 1992).

Konsep yang umum diketahui bahwa bagian tanaman yang dikerat masih mengandung suplai makanan serta hormon untuk potongan tanaman itu sendiri, sehingga makin besar keratan, makin besar kemampuannya untuk dirangsang dan beregenerasi. Ukuran eksplan yang paling baik adalah 0.5 – 1 cm. Namun ukuran ini dapat bervariasi bergantung material tanaman yang dipakai dan jenis tanamannya (Katuuk, 1989).

Ukuran yang terlampau kecil akan kurang daya tahannya bila dikulturkan, sementara bila terlampau besar akan sulit mendapatkan eksplan yang steril (Wattimena, 1992).

Zat Pengatur Tumbuh

Zat pengatur tumbuh adalah senyawa organik bukan hara, yang dalam jumlah sedikit dapat mendukung, menghambat dan dapat merubah proses fisiologi tumbuhan. Zat pengatur tumbuh dalam tanaman terdiri dari lima kelompok yaitu auksin, sitokinin, etilen, giberelin, dan inhibitor dengan ciri khas serta pengaruh yang berlainan terhadap proses fisiologis. Golongan auksin yang sering
perkembangan tanaman, baik secara in vitro maupun in vivo (Katuuk, 1989).

Media tanaman dalam kultur jaringan adalah tempat tumbuh eksplan, media tanaman tersebut dapat berupa larutan(cair) atau padat. Media cair berarti campuran komponen-komponen zat kimia dan air suling. Sedangkan media padat adalah media cair dengan ditambahkan pemadat agar (Hendaryono dan Wijayani, 1994).

Media tanaman harus berisi semua zat yang diperlukan untuk menjamin pertumbuhan eksplan. Bahan-bahan yang diramu berisi campuran garam-garam mineral, sumber unsur hara makro dan mikro, gula, protein, vitamin dan hormon tumbuh (Raharja, 1995).

Menurut Gunawan (1987), dalam kultur jaringan dikenal beberapa macam media dasar antara lain media MS (Murashige dan Skoog), media dasar B5 (Gamborg), media White, media VW (Vacint dan Went), media SH (Schenk dan Hildebrant), dan media N6(Chu). Media Gamborg dan Shyluk (1981) dalam Gunawan (1987) menyatakan bahwa media dalam formulasi MS merupakan media yang telah umum digunakan untuk berbagai jenis tanaman terutama untuk morfogenesis, kultur meristem dan regenerasi tanaman.
Medium yang dikembangkan oleh Murashige & Skoog (MS) untuk kultur jaringan digunakan secara luas untuk kultivasi kalus pada agar, demikian juga kultur suspensi sel dalam medium cair. Keistimewaan medium MS adalah kandungan nitrat, kalium dan amoniumnya sangat tinggi (Wetter dan Constabel, 1991).

Zat pemadat yang digunakan untuk membuat media padat adalah berupa agar-agar yang dijual dalam kemasan kaleng maupun kertas bungkus (yang sering digunakan untuk memasak). Akan tetapi banyak pula yang menggunakan agar batangan karena harganya relatif lebih murah. Penggunaan agar biasanya adalah 8 – 10 g/liter air suling (Hendaryono dan Wijayani, 1994).

Lingkungan Tumbuh

Tanaman yang hidup secara in vitro, ada lima faktor yang sangat berpengaruh pada pertumbuhan eksplan yaitu cahaya, kelembaban, suhu, pH, dan wadah kultur (Katuuk, 1989).

Kultur jaringan tumbuhan pada umumnya tumbuh dibawah tabung fluorescens pada intensitas 1000 - 5000 lux selama 26 jam (Yeoman, 1986). Dimana menurut Gunawan (1987) cahaya berperan dalam perkembangan dan pertumbuhan