PRA RANCANGAN PABRIK

PEMBUATAN FURFURAL DARI BAHAN BAKU
TANDAN KOSONG KELAPA SAWIT
DENGAAN KAPASITAS 800.000 KG/TAHUN

TUGAS AKHIR
Diajukan Untuk Memenuhi Persyaratan
Ujian Sarjana Teknik Kimia

OLEH :
APRIA NINGSIH
NIM. 050405049

DEPARTEMEN TEKNIK KIMIA
FAKULTAS TEKNIK
UNIVERSITAS SUMATERA UTARA
MEDAN
2009
LEMBAR PENGESAHAN

PEMBUATAN FURFURAL DARI BAHAN BAKU TANDAN KOSONG

KELAPA SAWIT

DENGAN KAPASITAS 800.000 KG PER TAHUN

TUGAS AKHIR

Diajukan Untuk Memenuhi Persyaratan

Ujian Sarjana Teknik Kimia

Oleh:

APRIA NINGSIH
NIM: 050405049

Telah Diperiksa/Disetujui:

Dosen Pembimbing I

Dr. Ir. Iriany, M.Si.
NIP: 19640613 199003 2 001

Dosen Pembimbing II

Ir. Indra Surya, M.Sc.
NIP: 19630609 198903 1 003

Dosen Penguji I

Dr. Ir. Iriany, M.Si.
NIP: 19640613 199003 2 001

Dosen Penguji II

Dr. Ir. M. Turmuzi L, MS
NIP: 19611225 198903 1 003

Dosen Penguji III

Zuhrina Masyithah, ST, MSc
NIP: 19710905 199512 2 001

Mengetahui:

Koordinator Tugas Akhir

Dr.Eng. Ir. Irvan, MSi
NIP: 19680820 199503 1 001

DEPARTEMEN TEKNIK KIMIA
FAKULTAS TEKNIK
UNIVERSITAS SUMATERA UTARA
MEDAN
2009
KATA PENGANTAR

Puji dan syukur penulis ucapkan kepada Allah swt yang telah memberikan kesehatan dan kemampuan, sehingga penulis dapat menyelesaikan tugas akhir ini dengan judul “Pra Rancangan Pabrik Pembuatan Furfural dari Bahan Baku Tandan Kosong Kelapa Sawit dengan Kapasitas 800.000 kg/tahun”.

Tugas akhir ini disusun untuk melengkapi salah satu syarat mengikuti ujian sarjana pada Departemen Teknik Kimia, Fakultas Teknik, Universitas Sumatera Utara.

Dalam menyelesaikan tugas akhir ini penulis banyak menerima bantuan, bimbingan, dan fasilitas dari berbagai pihak, penulis mengucapkan terima kasih kepada:

1. Ibu Dr.Ir. Iriany, MSi, sebagai dosen pembimbing I yang telah membimbing dan memberikan masukan serta arahan kepada penulis selama menyelesaikan tugas akhir ini.
2. Bapak Ir. Indra Surya, M.Sc, sebagai dosen pembimbing II yang telah memberikan pengarahan pada penulis selama menyelesaikan tugas akhir ini.
4. Bapak Dr.Eng.Ir.Irvan. MSi, sebagai Koordinator tugas akhir.
5. Staf pengajar dan Pegawai Departemen Teknik Kimia.

Penulis menyadari tugas akhir ini masih jauh dari sempurna, untuk itu penulis mengharapkan saran dan kritik yang membangun. Akhir kata penulis mengharapkan semoga tulisan ini dapat bermanfaat bagi pembaca.

Medan, Desember 2009

Penulis
(Appria Ningsih)
INTISARI

Furfural dibuat dari reaksi dehidrasi pentosa. Pentosa dapat diperoleh dari tumbuh-tumbuhan yang mengandung pentosan. Pentosan tersebut terlebih dahulu mengalami reaksi hidrolisa untuk memperoleh pentosa yang merupakan bahan baku utama furfural. Reaksi berlangsung didalam 2 reaktor dengan kondisi operasi pada tekanan 1 atm dan suhu 150°C.

Furfural yang diproduksi 800 ton/tahun dengan 330 hari kerja dalam 1 tahun. Lokasi pabrik direncanakan di daerah hilir Sungai Silau Asahan, Sumatera Utara, dengan luas areal 24.000 m², tenaga kerja yang dibutuhkan berjumlah 185 orang dengan bentuk badan usaha Perseroan Terbatas (PT) yang dipimpin oleh seorang direktur utama dengan struktur organisasi sistem garis.

Hasil analisa ekonomi Pabrik Furfural adalah sebagai berikut:

- Modal Investasi : Rp 372.887.205.114,-
- Biaya Produksi per tahun : Rp 245.874.903.348,-
- Hasil Jual Produk per tahun : Rp 488.076.005.578,-
- Laba Bersih per tahun : Rp 170.405.975.418,-
- Profit Margin : 49,87 %
- Break Event Point : 36,36 %
- Return of Investment : 45,70 %
- Pay Out Time : 2,19 tahun
- Return on Network : 76,17 %
- Internal Rate of Return : 62,76 %

Dari hasil analisa aspek ekonomi dapat disimpulkan bahwa pabrik pembuatan furfural ini layak untuk didirikan.
DAFTAR ISI

Kata Pengantar.. i
Intisari ... iii
Daftar Isi... iv
Daftar Tabel... viii
Daftar Gambar .. xi
BAB I PENDAHULUAN ... I-1
 1.1 Latar Belakang .. I-1
 1.2 Rumusan Permasalahan ... I-3
 1.3 Tujuan Perencanaan Pabrik I-3
BAB II TINJAUAN PUSTAKA ... II-1
 2.1 Tandan Kosong Kelapa Sawit II-1
 2.2 Furfural .. II-1
 2.3 Kegunaan Furfural ... II-2
 2.4 Sifat-sifat Bahan Baku dan Produk II-3
 2.5 Deskripsi Proses ... II-5
 2.5.1 Unit Penanganan Awal II-5
 2.5.2 Unit Reaksi Utama ... II-5
 2.5.3 Unit Pemurnian .. II-6
BAB III NERACA MASSA ... III-1
 3.1 Mixer Pengenceran (M-101) III-1
 3.2 Mixer (M-102) ... III-1
 3.3 Reaktor I (R-201) .. III-2
 3.4 Reaktor II (R-202) ... III-2
 3.5 Vaporizer (V-301) ... III-3
 3.6 Kolom Ekstraksi (V-302) III-3
 3.7 Destilasi (T-301) ... III-3
 3.7.1 Kondensor (E-302) III-4
 3.7.2 Reboiler (E-303) .. III-4
 3.8 Filter Press (FP-301) ... III-4
BAB IV NERACA ENERGI ... IV-1

4.1 Heater I (E-201) ... IV-1
4.2 Reaktor I (R-201) .. IV-1
4.3 Reaktor II (R-202) .. IV-1
4.4 Vaporizer (E-101) ... IV-2
4.5 Condensor sub-Cooler I (E-301) .. IV-2
4.6 Cooler I (E-302) ... IV-2
4.7 Heater II (E-307) ... IV-2
4.8 Kolom Destilasi (T-301) ... IV-3
4.9 Kondensor II (E-303) ... IV-3

BAB V SPESIFIKASI PERALATAN .. V-1

BAB VI INSTRUMENTASI PERALATAN VI-1

6.1 Instrumentasi .. VI-1
6.2 Keselamatan Kerja ... VI-6
6.3 Keselamatan Kerja pada Pabrik Pembuatan Furfural VI-8
 6.3.1 Pencegahan terhadap kebakaran dan Peledakan VI-8
 6.3.2 Peralatan Perlindungan Diri .. VI-9
 6.3.3 Keselamatan Kerja terhadap Listrik VI-9
 6.3.4 Pencegahan terhadap Gangguan Kesehatan VI-10
 6.3.5 Pencegahan terhadap Bahaya Mekanis VI-10

BAB VII UTILITAS ... VII-1

7.1 Kebutuhan Uap ... VII-1
7.2 Kebutuhan Air .. VII-2
 7.2.1 Screening ... VII-6
 7.2.2 Koagulasi dan Flokulasi .. VII-6
 7.2.3 Filtrasi ... VII-7
 7.2.4 Demineralisasi .. VII-9
 7.2.5 Deaerator ... VII-12
7.3 Kebutuhan Listrik ... VII-12
7.4 Unit Pengolahan Limbah .. VII-13
 7.4.1 Bak Penampungan ... VII-14
BAB VII PENGOLAHAN LIMBAH

7.4.2 Bak Pengendapan Awal .. VII-15
7.4.3 Bak Netralisasi.. VII-15
7.4.4 Pengolahan Limbah dengan Sistem
 Activated Sludge (Lumpur Aktif)................................. VII-16
7.4.5 Tangki Sedimentasi .. VII-19
7.5 Spesifikasi Peralatan Utilitas .. VII-20

BAB VIII LOKASI DAN TATA LETAK PABRIK......................... VIII-1
8.1 Lokasi pabrik... VIII-1
8.2 Tata Letak pabrik... VIII-2
8.3 Perincian Luas Areal Pabrik .. VIII-4

BAB IX ORGANISASI DAN MANAJEMEN PERALIHAN IX-1
9.1 Pengertian Organisasi dan Manajemen IX-1
9.2 Bentuk Badan Usaha ... IX-1
9.3 Bentuk Struktur Organisasi... IX-2
9.4 Uraian Tugas, Wewenang Dan Tanggung Jawab IX-3
 9.4.1 Rapat Umum Pemegang Saham (RUPS)......................... IX-3
 9.4.2 Manajer Umum/General Manager................................. IX-3
 9.4.3 Sekretaris .. IX-4
 9.4.4 Manajer Teknik .. IX-4
 9.4.5 Manajer Produksi .. IX-4
 9.4.6 Manajer Umum/Personalia dan Keuangan................. IX-4
 9.4.7 Kepala Bagian Teknik... IX-4
 9.4.8 Kepala Bagian Pemeliharaan...................................... IX-5
 9.4.9 Kepala Bagian Produksi.. IX-5
 9.4.10 Kepala Bagian Utilitas ... IX-5
 9.4.11 Kepala Bagian Pemasaran IX-5
 9.4.12 Kepala Bagian Personalia IX-5
 9.4.13 Kepala Bagian Keuangan dan Administrasi............... IX-6
 9.5 Sistem Kerja .. IX-6
 9.5.1 Karyawan Non-Shift.. IX-6
 9.5.2 Karyawan Shift... IX-7
9.6 Jumlah Karyawan Dan Tingkat Pendidikan IX-7
9.7 Analisa Jabatan... IX-8
9.8 Pengaturan Gaji Staf dan Karyawan................................. IX-9
9.9 Kesejahteraan Staf dan Karyawan................................. IX-11

BAB X ANALISA EKONOMI... X-1
10.1 Modal Investasi ... X-1
 10.1.1 Modal Investasi Tetap/ Fixed Capital Investmen (FCI) X-1
 10.1.2 Modal Kerja/ Working Capital (WC) X-3
 10.1.3 Biaya Tetap (BPT)/ Fixed Cost (TC) X-4
 10.1.4 Biaya Variable (BV)/ Variable Cost (VC) X-4
10.2 Total Penjualan (Total sales)... X-5
10.3 Perkiraan Rugi/ Laba Usaha... X-5
10.4 Analisa Aspek Ekonomi ... X-5
 10.4.1 Profit Margin (PM) ... X-5
 10.4.2 Break Evan Point (BEP) .. X-5
 10.4.3 Retrun On Investmen (ROI) X-6
 10.4.4 Pay Out Time (POT) .. X-7
 10.4.5 Return On Network (RON) X-7
 10.4.6 Internal Rate Of Return (IRR) X-7

BAB XI KESIMPULAN.. XI-1

DAFTAR PUSTAKA .. DP-1
LAMPIRAN A PERHITUNGAN NERACA MASSA LA-1
LAMPIRAN B PERHITUNGAN NERACA PANAS LB-1
LAMPIRAN C PERHITUNGAN SPESIFIKASI PERALATAN LC-1
LAMPIRAN D PERHITUNGAN SPESIFIKASI PERALATAN UTILITAS LD-1
LAMPIRAN E PERHITUNGAN ASPEK EKONOMI LE-1
DAFTAR TABEL

<table>
<thead>
<tr>
<th>No.</th>
<th>Judul Tabel</th>
<th>Halaman</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Data Kebutuhan Furfural Di Indonesia</td>
<td>I-2</td>
</tr>
<tr>
<td>1.2</td>
<td>Trend Harga Furfural Di Beberapa Pasar Dunia</td>
<td>I-2</td>
</tr>
<tr>
<td>2.1</td>
<td>Komposisi Tandan Kosong Kelapa Sawit</td>
<td>II-1</td>
</tr>
<tr>
<td>3.1</td>
<td>Neraca Massa pada Mixer Pengenceran (M-101)</td>
<td>III-1</td>
</tr>
<tr>
<td>3.2</td>
<td>Neraca Massa pada Mixer (M-102)</td>
<td>III-1</td>
</tr>
<tr>
<td>3.3</td>
<td>Neraca Massa pada Reaktor I (R-201)</td>
<td>III-2</td>
</tr>
<tr>
<td>3.4</td>
<td>Neraca Massa pada Reaktor II (R-202)</td>
<td>III-2</td>
</tr>
<tr>
<td>3.5</td>
<td>Neraca Massa pada Vaporizer (V-301)</td>
<td>III-3</td>
</tr>
<tr>
<td>3.6</td>
<td>Neraca Massa pada Kolom Ekstraksi (V-302)</td>
<td>III-3</td>
</tr>
<tr>
<td>3.7</td>
<td>Neraca Massa pada Kolom Destilasi (T-301)</td>
<td>III-3</td>
</tr>
<tr>
<td>3.7.1</td>
<td>Neraca Massa pada Kondensor Destilasi (E-302)</td>
<td>III-4</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Neraca Massa pada Reboiler Destilasi (E-303)</td>
<td>III-4</td>
</tr>
<tr>
<td>3.8</td>
<td>Neraca Massa pada Filter Press (FP-301)</td>
<td>III-4</td>
</tr>
<tr>
<td>3.9</td>
<td>Neraca Massa pada Flash Drum (T-302)</td>
<td>III-4</td>
</tr>
<tr>
<td>4.1</td>
<td>Neraca Panas pada Heater I (E-201)</td>
<td>IV-1</td>
</tr>
<tr>
<td>4.2</td>
<td>Neraca Panas pada Reaktor I (R-201)</td>
<td>IV-1</td>
</tr>
<tr>
<td>4.3</td>
<td>Neraca Panas pada Reaktor II (R-202)</td>
<td>IV-1</td>
</tr>
<tr>
<td>4.4</td>
<td>Neraca Panas Vaporizer (E – 101)</td>
<td>IV-2</td>
</tr>
<tr>
<td>4.5</td>
<td>Neraca Panas Kondensor SubCooler (E-301)</td>
<td>IV-2</td>
</tr>
<tr>
<td>4.6</td>
<td>Neraca Panas Cooler I (E-302)</td>
<td>IV-2</td>
</tr>
<tr>
<td>4.7</td>
<td>Neraca Panas pada Heater II (E-307)</td>
<td>IV-2</td>
</tr>
<tr>
<td>4.8</td>
<td>Neraca Panas Kolom Destilasi (T-301)</td>
<td>IV-3</td>
</tr>
<tr>
<td>4.9</td>
<td>Neraca Panas Kondensor II (E-303)</td>
<td>IV-3</td>
</tr>
<tr>
<td>6.1</td>
<td>Daftar Penggunan Instrumentasi Pada Pra-Rancangan</td>
<td>VI-5</td>
</tr>
<tr>
<td>7.1</td>
<td>Kebutuhan Uap Pada Alat</td>
<td>VII-1</td>
</tr>
<tr>
<td>7.2</td>
<td>Kebutuhan Air Pendingin Pada Alat</td>
<td>VII-2</td>
</tr>
<tr>
<td>7.4</td>
<td>Pemakaian Air Untuk Berbagai Kebutuhan</td>
<td>VII-4</td>
</tr>
<tr>
<td>7.5</td>
<td>Kualitas Air Sei Silau</td>
<td>VII-5</td>
</tr>
</tbody>
</table>
Tabel 7.6 Perincian Kebutuhan Listrik .. VII-12
Tabel 8.1 Perincian Luas Tanah ... VIII-4
Tabel 9.1 Jumlah Tenaga Kerja dan Latar Belakang Pendidikannya IX-8
Tabel 9.2 Perincian Gaji Pegawai ... IX-10
Tabel LA.1 Komposisi Tandan Kosong Kelapa Sawit LA-1
Tabel LA.2 Komposisi Tandan Kosong Kelapa Sawit yang digunakan dalam
perhitungan Neraca Massa .. LA-1
Tabel LA.3 Data Bilangan Antoine ... LA-10
Tabel LA.4 Trial Titik Didih Umpan Masuk Kolom Destilasi LA-11
Tabel LA.5 Trial Titik Embun Destilat .. LA-11
Table LA.6 Trial Titik Gelembung Bottom .. LA-12
Tabel LA.7 Penentuan nilai Φ .. LA-12
Tabel LB.1 Kapasitas Panas Liquid ... LB-1
Tabel LB.2 Tabel Kontribusi Unsur Atom dengan Metode Hurst dan
Harrison .. LB-2
Tabel LB.3 Kapasitas Panas Gas $C_{pg_{T^K}} = a + bT + cT^2 + dT^3$ [J/mol K] LB-2
Tabel LB.4 Panas Laten [kkal/mol] .. LB-3
Tabel LB.5 Kapasitas Panas Penguapan .. LB-4
Tabel LB.6 Tabel Kontribusi Gugus dengan Metode Benson et al LB-4
Tabel LB.7 Perhitungan Panas Masuk pada Heater I LB-9
Tabel LB.8 Perhitungan Panas Keluar pada Heater I LB-9
Tabel LB.9 Neraca Panas Heater I ... LB-10
Tabel LB.10 Perhitungan Panas Keluar pada Reaktor I (R-201) LB-11
Tabel LB.11 Neraca Panas Reaktor I (R-201) ... LB-11
Tabel LB.12 Perhitungan Panas Keluar pada Reaktor I (R-201) LB-12
Tabel LB.13 Neraca Panas Reaktor II (R-202) .. LB-13
Tabel LB.14 Perhitungan Panas Keluar Alur 9 pada Vaporizer (V-301) LB-14
Tabel LB.15 Perhitungan Panas Keluar Alur 10 pada Vaporizer (V-301) LB-14
Tabel LB.16 Neraca Panas pada Vaporizer (V-301) LB-14
Tabel LB.17 Perhitungan Panas Keluar Alur 11 pada Kondensor Subcooler LB-15
Tabel LB.18 Neraca Panas pada Kondensor Subcooler LB-15
Tabel LB.19 Perhitungan Panas Keluar Alur 12 pada Cooler I LB-15

Universitas Sumatera Utara
Tabel LB.20 Neraca Panas pada Cooler I ... LB-16
Tabel LB.21 Perhitungan Panas Masuk Alur 15 pada Heater II LB-17
Tabel LB.22 Perhitungan Panas Keluar Alur 16 pada Heater II LB-17
Tabel LB.23 Neraca Panas pada Heater II .. LB-18
Tabel LB.24 Perhitungan Panas Masuk Kondensor (E-302) LB-18
Tabel LB.25 Perhitungan Panas Keluar Kondensor (Ld) LB-19
Tabel LB.26 Perhitungan Panas Keluar Kondensor (DH) LB-19
Tabel LB.27 Panas Perhitungan Panas Keluar Reboiler (BHb) LB-19
Tabel LB.28 Neraca Panas pada Kolom Destilasi .. LB-20
Tabel LB.29 Perhitungan Panas Keluar Alur 24 pada Kondensor II LB-20
Tabel LB.30 Neraca Panas pada Kondensor II .. LB-21
Tabel LC.1 Komposisi bahan pada alur Vd destilasi (T-301) LC-67
Tabel LC.2 Komposisi bahan pada alur Lb destilasi (T-301) LC-68
Tabel LD.1 Perhitungan Entalpi dalam Penentuan Tinggi Menara PendinginLD-31

Tabel LE.1 Perincian Harga Bangunan, dan Sarana Lainnya LE-2

..

Tabel LE.2 Harga Indeks Marshall dan Swift ... LE-3
Tabel LE.3 Estimasi Harga Peralatan Proses .. LE-6
Tabel LE.4 Estimilasi Harga Peralatan Utilitas dan Pengolahan Limbah LE-7
Tabel LE.5 Biaya Sarana Transportasi .. LE-10
Tabel LE.6 Perincian Gaji Pegawai .. LE-14
Tabel LE.7 Perincian Biaya Kas ... LE-16
Tabel LE.8 Perincian Modal Kerja ... LE-17
Tabel LE.9 Aturan Depresi Sesuai UU Republik Indonesia No. 17
 Tahun 2000 .. LE-18
Tabel LE.10. Perhitungan Biaya Depresiasi Sesuai UURI No. 17
 Tahun 2000 .. LE-19
Tabel LE.11 Data Perhitungan BEP .. LE-27
Tabel LE.12 Data Perhitungan IRR ... LE-28
DAFTAR GAMBAR

Gambar 2.1 Struktur Furfural ... II-2
Gambar 6.1 Instrumentasi pada alat ... VI-4
Gambar 8.1 Tata letak pabrik furfural .. VIII-5
Gambar 9.1 Struktur organisasi pabrik pembuatan furfural IX-12
Gambar LD. 1 Sketsa sebagian bar screen, satuan mm (dilihat dari atas) LD-2
Gambar LD. 2 Grafik Entalpi dan temperatur cairan pada cooling tower (CT) LD-31
Gambar LD. 3 Kurva Hy terhadap 1 (Hy*-Hy) LD-32
Gambar LE.4 Grafik Break Even Point (BEP) LE-29